Organic electrode materials are promising to be applied in sodium ion batteries (SIBs) due to their low cost and easily modified molecular structures. Nevertheless, low conductivity and high solubility in electrolytes still limit the development of organic electrodes. In this work, a carboxylate small molecule (BDTTS) based on tetrathiafulvalene is developed as anode material for SIBs. BDTTS has a large rigid π-conjugated planar structure, which may reduce solubility in the electrolyte, meanwhile facilitating charge transporting. Experimental results and theoretical calculations both support that apart from the four carbonyl groups, the sulfur atoms on tetrathiafulvalene also provide additional active sites during the discharge/charge process. Therefore, the additional active sites can well compensate for the capacity loss caused by the large molecular weight. The as-synthesized BDTTS electrode renders an excellent capacity of 230 mAh g at a current density of 50 mA g and an excellent long-life performance of 128 mAh g at 2 C after 500 cycles. This work enriches the study on organic electrodes for high-performance SIBs and paves the way for further development and utilization of organic electrodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202301847 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China.
Motivated by the inherent benefits of synergistically combining electrochemical methodologies with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of benzyl chlorides with aryl halides, yielding chiral 1,1-diaryl compounds with good to excellent enantioselectivity. This catalytic reaction can not only be applied to aryl chlorides/bromides, which are challenging to access by other means, but also to benzyl chlorides containing silicon groups. Additionally, the absence of a sacrificial anode lays a foundation for scalability.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China.
The pivotal role of electrolytes such as NaSO and NaCl in electrochemical treatment of dyeing wastewater was investigated by comparing recalcitrant Reactive Red X-3B (RRX-3B) degradation rates, active species formation and intermediates generation in a double-chamber cell. It was found that similar reactive oxygen species (ROS) formed in the anodic chamber are OH and O, in the cathodic chamber is O with different electrolytes, while this is not the case for ROS contribution, RRX-3B degradation kinetic and intermediates. NaCl favored the generation of O, faster decolorization (-N=N- cleavage), and organic intermediates degradation in the anodic chamber.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.
Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Environmental Microbiology Group, Institute of Water Research, University of Granada, 18003, Granada, Spain.
Microbial fuel cell (MFC) technology has received increased interest as a suitable approach for treating wastewater while producing electricity. However, there remains a lack of studies investigating the impact of inoculum type and hydraulic retention time (HRT) on the efficiency of MFCs in treating industrial saline wastewater. The effect of three different inocula (activated sludge from a fish-canning industry and two domestic wastewater treatment plants, WWTPs) on electrochemical and physicochemical parameters and the anodic microbiome of a two-chambered continuous-flow MFC was studied.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR. China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR. China. Electronic address:
Antimony (Sb) contamination in water resources poses a critical environmental and health challenge globally. Sulfate reducing bacteria (SRB) are employed to reduce SO to S for removing Sb in a microbial electrolysis cell (MEC). Yet, the reduction efficiency of reducing SO and Sb(Ⅴ) through SRB remains relatively low, and the underlying mechanism remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!