Organic Ligand Engineering for Tailoring Electron-Phonon Coupling in 2D Hybrid Perovskites.

Nano Lett

School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.

Published: May 2024

In the emerging two-dimensional organic-inorganic hybrid perovskites, the electronic structures and carrier behaviors are strongly impacted by intrinsic electron-phonon interactions, which have received inadequate attention. In this study, we report an intriguing phenomenon of negative carrier diffusion induced by electron-phonon coupling in (2T)PbI. Theoretical calculations reveal that the electron-phonon coupling drives the band alignment in (2T)PbI to alternate between type I and type II heterostructures. As a consequence, photoexcited holes undergo transitions between the organic ligands and inorganic layers, resulting in abnormal carrier transport behavior compared to other two-dimensional hybrid perovskites. These findings provide valuable insights into the role of electron-phonon coupling in shaping the band alignments and carrier behaviors in two-dimensional hybrid perovskites. They also open up exciting avenues for designing and fabricating functional semiconductor heterostructures with tailored properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c00463DOI Listing

Publication Analysis

Top Keywords

electron-phonon coupling
16
hybrid perovskites
16
carrier behaviors
8
two-dimensional hybrid
8
electron-phonon
5
organic ligand
4
ligand engineering
4
engineering tailoring
4
tailoring electron-phonon
4
coupling
4

Similar Publications

Lower-dimensional organic-inorganic hybrid perovskite materials promise to revolutionize the optoelectronics industry due to the tremendous possibilities of exotic control on excitonic properties driven via quantum confinement. Flexible organic cations acting as spacers and stabilizers enhance electron-phonon couplings, further amplifying the potential for modular light-matter interactions in these materials. Herein we unravel the nature of excitons in a quasi-1D chain of corner-sharing bismuth iodide octahedra with an intrinsic quantum well structure stabilized by a hexyl-diammonium cation.

View Article and Find Full Text PDF

The physical and superconducting characteristics of SrPdP and SrPdAs compounds with applied pressure were calculated using density functional theory. The pressure effect on the structural properties of these compounds was investigated. The results show that both lattice constants and volume decrease almost linearly with increasing pressure.

View Article and Find Full Text PDF

In pursuit of high- hydride superconductors, the molecular hydrides have attracted less attention because the hydrogen quasimolecules are usually inactive for superconductivity. Here, we report on the successful synthesis of a novel bismuth hydride superconductor 2/-BiH at pressures around 170-180 GPa. Its structure comprises bismuth atoms and elongated hydrogen molecules with a H-H bond length of 0.

View Article and Find Full Text PDF

Laser-driven projection displays face a critical challenge in developing laser-excitable and high-performance narrowband green emitters. Herein, new AlO-LaMgAlO: Mn (AlO-LMA: Mn) transparent composite ceramics are reported via high-temperature vacuum sintering, which produces a high-color-purity (95.4%) green emission with full width at half maximum of 24 nm and superior thermal and moisture and laser irradiation stability.

View Article and Find Full Text PDF

The utilization of excited charge carriers in semiconductor nanocrystals (NCs) for optoelectronic technologies has been a long-standing goal in the field of nanoscience. Experimental efforts to extend the lifetime of excited carriers have therefore been a principal focus. To understand the limits of these lifetimes, in this work, we theoretically study the time scales of pure electron relaxation in negatively charged NCs composed of two prototypical materials: CdSe and CdS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!