Phosphagermylenylidenes (R-P═Ge), as heavier analogs of isonitriles, whether in their free state or as complexes with a Lewis base, have not been previously identified as isolable entities. In this study, we report the synthesis of a stable monomeric phosphagermylenylidene within the coordination sphere of a Lewis base under ambient conditions. This species was synthesized by Lewis base-induced dedimerization of a cyclic phosphagermylenylidene dimer or via MeSiCl elimination from a phosphinochlorogermylene framework. The deliberate integration of a bulky, electropositive N-heterocyclic boryl group at the phosphorus site, combined with coordination stabilization by a cyclic (alkyl)(amino)carbene at the low-valent germanium site, effectively mitigated its natural tendency toward oligomerization. Structural analyses and theoretical calculations have demonstrated that this unprecedented species features a P═Ge double bond, characterized by conventional electron-sharing π and σ bonds, complemented by lone pairs at both the phosphorus and germanium atoms. Preliminary reactivity studies show that this base-stabilized phosphagermylenylidene demonstrates facile release of ligands at the Ge atom, coordination to silver through the lone pair on P, and versatile reactivity including both (cyclo)addition and cleavage of the P═Ge double bond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c04434 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Universität Heidelberg: Universitat Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120, Heidelberg, GERMANY.
Electromerism (aka. valence tautomerism) corresponds to the switching of electronic distributions between redox-active ligands and central elements. While this phenomenon is well established for several transition metals, the Pd(0)/Pd(II) couple could not yet be involved due to the high energy of the Pd(0) state.
View Article and Find Full Text PDFAm J Surg Pathol
December 2024
Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center.
DEK::AFF2 fusion nonkeratinizing squamous cell carcinoma (NKSCC) is an emerging entity in the sinonasal tract, temporal bone, and skull base. However, the clinical behavior of these tumors has not been well studied. Here, we report the largest cohort of DEK::AFF2 carcinomas to determine if morphology, mitotic rate, and/or Ki-67 IHC are associated with patient outcomes, including a comparison with high-risk human papillomavirus (HPV)-associated and independent patients.
View Article and Find Full Text PDFChem Res Toxicol
December 2024
University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, Missouri 65211, United States.
Apurinic/apyrimidinic endonuclease 1 (APE1) is a central enzyme in the base excision repair (BER) pathway. APE1 catalyzes incision of the phosphodiester linkage on the 5'-side of apurinic/apyrimidinic (AP) sites during the repair of damaged nucleobases in cellular DNA. Inhibition of this enzyme can potentiate the action of DNA-damaging chemotherapeutic agents.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia. Electronic address:
Photocatalytic oxygen evolution reaction (OER) is pivotal for sustainable energy systems yet lacks high-performance catalysts capable of strong visible light absorption, robust charge dynamics, fast reaction kinetics, and high oxidation capability. Herein, we report the multiscale optimization of carbon nitride through the construction of porous curled carbon nitride nanosheets (CNA-B30) incorporating boron center/cyano group Lewis acid-base pairs (LABPs). The unique chemical and structural features of CNA-B30 extended the photoabsorption edges of π → π* and n → π* electronic transitions to 470 nm and 715 nm, respectively.
View Article and Find Full Text PDFSmall
December 2024
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
A mixed-ligand-based thermo-chemically robust and undulated metal-organic framework (MOF) is developed that embraces carboxamide moiety-grafted porous channels and activation-induced generation of open-metal site (OMS). The guest-free MOF acts as an outstanding heterogeneous catalyst in Hantzsch condensation for electronically assorted substrates with low catalyst loading and short duration under greener conditions than the reported materials. Besides Lewis acidic OMS, the carboxamide group activates the substrate via two-point hydrogen bonding, highlighting the effectiveness of custom-made functionalities in this multi-component reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!