The demand for identification of maize varieties has increased dramatically due to the phenomenon of mixed seeds and inferior varieties pretending to be high-quality varieties continuing to occur. It is urgent to solve the problem of efficient and accurate identification of maize varieties. A hyperspectral image acquisition system was used to acquire images of maize seeds. Regions of interest (ROI) with an embryo size of 10 × 10 pixel were extracted, and the average spectral information in the range of 949.43-1709.49 nm was intercepted for the subsequent study in order to eliminate random noise at both ends. Savitzky-Golay (SG) smoothing algorithm and multiple scattering correction (MSC) were used to pretreat the full-band spectrum. The feature wavelengths were screened by successive projection algorithms (SPA), competitive adaptive reweighted sampling (CARS) single screening, and two combinations of CARS-SPA and CARS + SPA, respectively. Support vector machines (SVMs) and models optimized based on genetic algorithm (GA), particle swarm optimization (PSO) were established by using full bands (FB) and feature bands as the model input. The results showed that the MSC-(CARS-SPA)-GA-SVM model had the best performance with 93.00% of the test set accuracy, 8 feature variables, and a running time of 24.45 s. MSC pretreatment can effectively eliminate the scattering effect of spectral data, and the feature wavelengths extracted by CARS-SPA can represent all wavelength information. The study proved that hyperspectral imaging combined with GA-SVM can realize the identification of maize varieties, which provided a theoretical basis for maize variety classification and authenticity identification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077206 | PMC |
http://dx.doi.org/10.1002/fsn3.3984 | DOI Listing |
Noncoding RNA
January 2025
Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN 37232, USA.
Introduction: Hyperuricemia is characterized by increased uric acid (UA) in the body. The ability to block xanthine oxidase (XO) is a useful way to check how different bioactive molecules affect hyperuricemia. Previous reports showed the significant effect of corn against hyperuricemia disorder with its anti-XO activity.
View Article and Find Full Text PDFPlant Dis
January 2025
Barani agricultural research institute, Chakwal, chakwal, Punjab, Pakistan;
Crown rot impacted olive plants (cv. Koroneiki) in an orchard in Chakwal, Punjab, Pakistan (32° N, 72° E), with a prevalence of 60%. Observable symptoms included leaf chlorosis, defoliation, wilting, and twig dieback in 6-8-year-old plants, ultimately resulting in their demise (Fig.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
Waterlogging (WL) is an important abiotic stress, severely affecting plant growth and development, inhibiting root respiration and degradation of chlorophyll, senescence of leaves and chlorosis leading to substantial yield loss. These intensities of yield losses generally depend on the duration of WL and crop growth stages. Maize being a dry land crop is particularly sensitive to WL.
View Article and Find Full Text PDFBMC Genomics
January 2025
Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
Background: Conserved non-coding sequences (CNS) are islands of non-coding sequences conserved across species and play an important role in regulating the spatiotemporal expression of genes. Identification of CNS provides valuable information about potentially functional genomic elements, regulatory regions, and helps to gain insights into the genetic basis of crop agronomic traits.
Results: Here, we comprehensively analyze CNS in maize, by comparing the genomes of maize inbred line B73 (Zea mays ssp.
J Environ Manage
January 2025
College of Environmental Science and Engineering, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China.
The growth of population and changes in dietary structure have led to a continuous increase in demand for livestock and poultry products, resulting in the increase of the gaseous reactive nitrogen (GNr) emissions from livestock and poultry breeding systems and posing a threat to the human and ecosystem health. The characteristics from GNr emissions of six livestock and poultry breeding systems at the provincial level of China in 2020 were evaluated with the framework of life cycle analysis. Additionally, this study explored the impact of silage maize replacing traditional maize as feed on reducing GNr emissions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!