Developing multifunctional nanomaterials through environmentally friendly and efficient approaches is a pivotal focus in nanotechnology. This study aimed to employ a biogenic method to synthesize multifunctional copper oxide nanoparticles (LI-CuO NPs) with diverse capabilities, including antibacterial, antioxidant, and seed priming properties, as well as photocatalytic organic dye degradation and wastewater treatment potentials using leaf extract. The synthesized LI-CuO NPs were extensively characterized using UV-vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform-infrared spectroscopy (FT-IR). The colloid displayed surface plasmon resonance peaks at 320 nm, characteristic of LI-CuO NPs. DLS analysis revealed an average particle size of 93.5 nm and a negative zeta potential of -20.3 mV. FTIR and XPS analyses demonstrated that LI-CuO NPs possessed abundant functional groups that acted as stabilizing agents. XRD analysis indicated pure crystalline and spherical LI-CuO NPs measuring 36 nm in size. Antibacterial tests exhibited significant differential activity of LI-CuO NPs against both gram-negative (, ) and gram-positive ( and ) bacteria. In antioxidant tests, the LI-CuO NPs demonstrated a remarkable radical scavenging activity of 97.6 % at a concentration of 400 μg mL. These nanoparticles were also found to enhance mustard seed germination at low concentrations. With a remarkable reusability, LI-CuO NPs exhibited excellent photocatalytic performance, with a degradation efficiency of 97.6 % at 150 μg/mL as well as a 95.6 % reduction in turbidity when applied to wastewater treatment. In conclusion, this study presents environmentally friendly method for the facile synthesis of LI-CuO NPs that could potentially offer promising applications in biomedicine, agriculture, and environmental remediation due to their multifunctional properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078880 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e30178 | DOI Listing |
Heliyon
May 2024
Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, 77446, USA.
Developing multifunctional nanomaterials through environmentally friendly and efficient approaches is a pivotal focus in nanotechnology. This study aimed to employ a biogenic method to synthesize multifunctional copper oxide nanoparticles (LI-CuO NPs) with diverse capabilities, including antibacterial, antioxidant, and seed priming properties, as well as photocatalytic organic dye degradation and wastewater treatment potentials using leaf extract. The synthesized LI-CuO NPs were extensively characterized using UV-vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform-infrared spectroscopy (FT-IR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!