The potentials of mesoporous TiO-ZnO (3TiZn) were explored on photocatalytic degradation of doxycycline (DOX) antibiotic, likewise the influence of adsorption on the photocatalytic process. The 3TiZn was characterized for physical and chemical properties. Stability, reusability, kinetic and the ability of 3TiZn to degrade high concentration of pollutant under different operating conditions were investigated. Photocatalytic degradation of DOX was conducted at varied operating conditions, and the best was obtained at 1 g/L catalyst dosage, solution inherent pH (4.4) and 50 ppm of DOX. Complete degradation of 50 ppm and 100 ppm of DOX were attained within 30 and 100 min of the reaction time, respectively. The stability and reusability study of the photocatalyst proved that at the tenth (10th) cycle, the 3TiZn is as effective in the degradation of DOX as in the first cycle. This may be attributed to the fusion of the mixed oxides during calcination. The 3TiZn is mesoporous with a pore diameter of 17 nm, and this boosts it potential to degrade high concentration of DOX. It was observed that the adsorption capacity of 3TiZn enhance the photocatalytic process. It can be emphasized that 3TiZn portrayed a remarkable catalyst stability and good potentials for industrial application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079255PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e30531DOI Listing

Publication Analysis

Top Keywords

photocatalytic degradation
12
mesoporous tio-zno
8
degradation doxycycline
8
photocatalytic process
8
stability reusability
8
degrade high
8
high concentration
8
operating conditions
8
degradation dox
8
3tizn
7

Similar Publications

A simple and inexpensive process from natural phosphate in the presence of Ag ions was used to develop AgO-loaded hydroxyapatite nanocomposites. The structural and textural characterization of the nanocomposites suggests that the AgO nanoparticles are well dispersed on the hydroxyapatite (HAp). The prepared nanocomposites show efficient Rhodamine B (RhB) dye photocatalytic degradation in water under visible and UV-visible light irradiation.

View Article and Find Full Text PDF

In this study, we aimed to enhance the photocatalytic performance of molybdenum oxide (MoO) thin films by doping with silver (Ag) via a spray pyrolysis technique. The primary objective for silver incorporation was intended to introduce additional energy levels into the band structure of MoO, improving its efficiency. Structural, optical, and photocatalytic properties were analyzed using X-ray diffraction (XRD) and optical spectroscopy.

View Article and Find Full Text PDF

This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.

View Article and Find Full Text PDF

Bismuth-based photocatalysts proved to have remarkable photoactivity for antibiotic degradation from water. However, the two significant challenges of bismuth-based photocatalysts are the fast charge recombination rate and higher energy band gap. This study successfully synthesized a novel I-Bi/BiWO/MWCNTs (C-WBI) heterostructure composite photocatalysts with shorter energy band-gap and higher charge production capability through interfacial amidation linkage.

View Article and Find Full Text PDF

The role and progress of zeolites in photocatalytic materials.

Environ Res

January 2025

Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China; School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China. Electronic address:

This paper focuses on the research background of zeolite-based photocatalytic materials, the role of zeolites in photocatalytic materials, and their application in various fields. It focuses on the critical roles of zeolites in photocatalytic materials and their application prospects. It outlines the mechanisms of zeolites in different photocatalytic materials, including adsorption, structural stabilization, domain-limiting, electric field, catalysis, ion exchange, shape-selective, and solvation, which elucidates the potential advantages of zeolites in photocatalytic materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!