A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Involvement of the SecYEG Pathway in Biosurfactant Production and Biofilm Formation. | LitMetric

With species, about 30% of extracellular proteins are translocated through the cytoplasmic membrane, coordinated by the Sec translocase. This system mainly consists of the cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel. The purpose of this work was to investigate the effects of the SecYEG export system on the production of industrial biomolecules, such as biosurfactants, proteases, amylases, and cellulases. Fifty-two isolates of species were obtained from traditional fermented foods and then characterized using molecular microbiology methods. The isolates secreted exoenzymes that included cellulases, amylases, and proteases. We present evidence that a biosurfactant-like molecule requires the SecA ATPase and the SecYEG membrane channel for its secretion. In addition, we showed that biomolecules involved in biofilm formation required the SecYEG pathway. This work presents a novel seven-target fragment multiplex PCR assay capable of identification at the species level of through a unique SecDF chromosomal gene. The bacterial membrane protein SecDF allowed the discrimination of , , and . SecA was able to interact with AprE, AmyE, and TasA. The Rose Bengal inhibitor of SecA crucially affected the interaction of AprE, AmyE, TapA, and TasA with recombinant Gst-SecA. The Rose Bengal prevented species from secreting and producing proteases, cellulases, amylases, and biosurfactant-like molecules. It also inhibited the formation of biofilm cell communities. The data support, for the first time, that the SecYEG translocon mediates the secretion of a biosurfactant-like molecule.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081756PMC
http://dx.doi.org/10.1155/2024/6627190DOI Listing

Publication Analysis

Top Keywords

secyeg pathway
8
biofilm formation
8
cellulases amylases
8
biosurfactant-like molecule
8
apre amye
8
rose bengal
8
secyeg
5
involvement secyeg
4
pathway biosurfactant
4
biosurfactant production
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!