AI Article Synopsis

  • The study aimed to evaluate how different printing orientations affect the fit and gaps of a 3-unit interim fixed partial denture created using two additive manufacturing methods compared to traditional milling.
  • A digital design was printed using stereolithography (SLA) and digital light processing (DLP) technologies, with measurements taken for gaps in various orientations, while milling served as a control.
  • Results indicated that SLA produced comparable fit to milling across all orientations, whereas DLP showed significantly larger gaps, suggesting SLA is more reliable for dental applications.

Article Abstract

Background: The aim was to assess the consequence of different printing orientation on the marginal misfit and internal gap of 3-unit interim fixed partial denture manufactured by two different additive manufacturing technologies compared to milling technique.

Material And Methods: Three-unit interim fixed partial denture (FPD) was designed by using exocad software (Dental CAD 3.0 Galway) in the format of standard tessellation language (STL) , which was transferred to a nesting software (PreForm) and printed by A Next Dent C&B resin liquid (NextDent; Soesterberg, Neitherland) by using two printing technologies; stereolithography (SLA, n=30) and digital light processing (DLP, n=30) with 3 different orientations (occlusal direction [0°] ,buccal direction [90°] & lingual direction [270°]) for each technology (n=10). Additionally, a control group was milled (CAD/Milling, n=10) from DC PMMA A1 Disc (White peaks dental solutions; Gmbh& co., Germany). A Microcomputed tomography was used to measure the marginal misfit and internal gap for each specimen in 12 different points. The average value of the marginal and internal gaps measurements was calculated, and one-way ANOVA was used for the comparison between groups.

Results: SLA printing technology showed a similar result to CAD/Milling with all different printing orientations tested. DLP printing technology showed the highest gap values within all the printing orientations with significant difference (< 0.001) with the CAD/Milling and SLA.

Conclusions: Regarding the trueness of the interim FPDs, SLA was a promising technology for its superior adaptation. Marginal misfit and Internal gap for DLP printing technology limiting the use of that technology as it exceeded the acceptable clinical range. 3D Printing, Microcomputed topography, Marginal Gap, Internal Misfit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078504PMC
http://dx.doi.org/10.4317/jced.61422DOI Listing

Publication Analysis

Top Keywords

printing technology
16
interim fixed
12
fixed partial
12
partial denture
12
marginal misfit
12
misfit internal
12
internal gap
12
printing
9
microcomputed tomography
8
printing orientations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!