Purpose: One of the novel cell sources of cell-based liver regenerative medicine is human chemically-derived hepatic progenitors (hCdHs). We previously established this cell by direct hepatocyte reprogramming with a combination of small molecules (hepatocyte growth factor, A83-01, CHIR99021). However, there have been several issues concerning the cell's stability and maintenance, namely the occurrences of epithelial-mesenchymal transition (EMT) that develop fibrotic phenotypes, resulting in the loss of hepatic progenitor characteristics. These hepatic progenitor attributes are thought to be regulated by SOX9, a transcription factor essential for hepatic progenitor cells and cholangiocytes.
Methods: To suppress the fibrotic phenotype and improve our long-term hCdHs culture technology, we utilized the epigenetic modulating drugs DNA methyltransferase inhibitor (5-azacytidine) and histone deacetylase inhibitor (sodium butyrate) that have been reported to suppress and revert hepatic fibrosis. To confirm the essential role of SOX9 to our cell, we used clustered regularly interspaced short palindromic repeats-interference (CRISPRi) to repress the SOX9 expression.
Results: The treatment of only 5-azacytidine significantly reduces the fibrosis/mesenchymal marker and EMT-related transcription factor expression level in the early passages. Interestingly, this treatment also increased the hepatic progenitor markers expression, even during the reprogramming phase. Then, we confirmed the essential role of SOX9 by repressing the SOX9 expression with CRISPRi which resulted in the downregulation of several essential hepatic progenitor cell markers.
Conclusion: These results highlight the capacity of 5-azacytidine to inhibit EMT-driven hepatic fibrosis and the significance of SOX9 on hepatic progenitor cell stemness properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076951 | PMC |
http://dx.doi.org/10.4174/astr.2024.106.5.274 | DOI Listing |
Hepatol Commun
February 2025
Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
Background: Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Cancer-associated fibroblasts (CAFs) play important roles in the occurrence and development of hepatocellular carcinoma (HCC) and are a key component of the immunosuppressive microenvironment. However, the origin of CAFs has not been fully elucidated. We employed single-cell sequencing technology to identify the dynamic changes in different subsets of fibroblasts at different time points in rat primary HCC model.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
Skeletal muscle plays a significant role in both local and systemic energy metabolism. The current investigation aims to explore the role of the Bambi gene in skeletal muscle, focusing on its implications for muscle hypertrophy and systemic metabolism. We hypothesize that skeletal muscle-specific deletion of Bambi induces muscle hypertrophy, improves metabolic performance, and activates thermogenic adipocytes via the reprogramming of progenitor of iWAT, offering potential therapeutic strategies for metabolic syndromes.
View Article and Find Full Text PDFAnat Cell Biol
January 2025
Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.
Liver regeneration is intricate, involves many cells, and necessitates extended research. This study aimed to investigate the response of liver oval cells (bipotent liver progenitors) to the epigenetic modifier trichostatin A (TSA), an HDAC1 inhibitor, and to develop a scoring system for assessing the response of these cells. Three groups of equally divided rats (n=24) were selected: control (A, dimethyl sulfoxide treated); oval cell induction (B, acetylaminofluorene [2-AAF] to block hepatocyes/carbon tetrachloride [CCL4] to induce oval cell response); and epigenetic modulation (C, TSA post 2-AAF/CCL4 injury).
View Article and Find Full Text PDFThromb Haemost
January 2025
Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
Background: V617F-mutated myeloproliferative neoplasms (MPN) exhibit abnormal proliferation of bone marrow progenitors and increased risk of thrombosis, specifically in splanchnic veins (SVT). The contribution of the endothelium to the development of the prothrombotic phenotype was explored.
Material And Methods: Plasma and serum samples from V617F MPN patients with (n=26) or without (n=7) thrombotic debut and different treatments, were obtained (n=33).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!