The secondary somatosensory cortex (SII) and posterior insular cortex (pIC) are recognized for processing touch and movement information during hand manipulation in humans and non-human primates. However, their involvement in three-dimensional (3D) object manipulation remains unclear. To investigate neural activity related to hand manipulation in the SII/pIC, we trained two macaque monkeys to grasp three objects (a cone, a plate, and a ring) and engage in visual fixation on the object. Our results revealed that 19.4% ( = 50/257) of the task-related neurons in SII/pIC were active during hand manipulations, but did not respond to passive somatosensory stimuli. Among these neurons, 44% fired before hand-object contact (reaching to grasping neurons), 30% maintained tonic activity after contact (holding neurons), and 26% showed continuous discharge before and after contact (non-selective neurons). Object grasping-selectivity varied and was weak among these neurons, with only 24% responding to fixation of a 3D object (visuo-motor neurons). Even neurons unresponsive to passive visual stimuli showed responses to set-related activity before the onset of movement (42%,  = 21/50). Our findings suggest that somatomotor integration within SII/pIC is probably integral to all prehension sequences, including reaching, grasping, and object manipulation movements. Moreover, the existence of a set-related activity within SII/pIC may play a role in directing somatomotor attention during object prehension-manipulation in the absence of vision. Overall, SII/pIC may play a role as a somatomotor hub within the lateral grasping network that supports the generation of intentional hand actions based on haptic information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079213PMC
http://dx.doi.org/10.3389/fnint.2024.1346968DOI Listing

Publication Analysis

Top Keywords

secondary somatosensory
8
posterior insular
8
somatomotor hub
8
manipulation movements
8
hand manipulation
8
object manipulation
8
fixation object
8
neurons
8
reaching grasping
8
set-related activity
8

Similar Publications

People with fibromyalgia syndrome (FMS) may have difficulty attending rehabilitation sessions. We investigated the feasibility (adherence and satisfaction) of implementing an 8-week home-based somatosensory, entirely remote, self-training programme using the TrainPain smartphone app in people with FMS. The secondary aim was to evaluate the effect on pain symptoms.

View Article and Find Full Text PDF

Differential neurogenic patterns underlie the formation of primary and secondary areas in the developing somatosensory cortex.

Cereb Cortex

January 2025

Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan.

Article Synopsis
  • The cerebral cortex has organized areas that are connected by axons, but how neurogenesis (the development of new neurons) is coordinated between these areas isn’t well understood.
  • The somatosensory cortex is important for processing touch and receives sensory information through the thalamus to its primary and secondary areas.
  • Our study found that neuron production in the secondary somatosensory cortex (S2) happens before the primary somatosensory cortex (S1) and ends sooner, with a decrease in upper-layer neurons in S2 due to a change at the surface layer, suggesting a specific mechanism that organizes the development of these cortical areas.
View Article and Find Full Text PDF

Capsaicin-induced secondary hyperalgesia differences between the trigeminal and spinal innervation.

Sci Rep

January 2025

Department of Biosciences, Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, Brazil.

This study compared the degree of secondary hyperalgesia and somatosensory threshold changes induced by topical capsaicin between spinal and trigeminal innervation. This crossover clinical trial included 40 healthy individuals in which 0.25 g of 1% capsaicin cream was randomly applied for 45 minutes to a circular area of 2 cm to the skin covering the masseter muscle and forearm in 2 different sessions, separated by at least 24 hours and no more than 72 hours (washout period).

View Article and Find Full Text PDF

Spike-wave-discharges (SWD) are the electrophysiological hallmark of absence epilepsy. SWD are generated in the thalamo-cortical network and a seizure onset zone was identified in the somatosensory cortex (S1). We have shown before that inhibition of the centromedian thalamic nucleus (CM) in GAERS rats resulted in a selective suppression of the spike component while rhythmic cortical 5-9 Hz oscillations remained present.

View Article and Find Full Text PDF

Perceptual choice and motor signals in mouse somatosensory cortex.

bioRxiv

December 2024

Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD.

Somatosensory cortex activity relates both to sensation and movement, reflecting their intimate relationship, but the extent and nature of sensory-motor interactions in the somatosensory cortex remain unclear. Here, we investigated perception-related sensory and motor signals in the whisker areas of mouse primary (wS1) and secondary (wS2) somatosensory cortices. We recorded neuronal activity while mice performed a whisker detection task using two alternative lickports, one each to indicate the presence or absence of a whisker deflection on a given trial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!