in the bloodstream causes high morbidity and mortality, exacerbated by the spread of multidrug-resistant and methicillin-resistant (MRSA). We aimed to characterize the circulating lineages of from bloodstream infections and the contribution of individual lineages to resistance over time. Here, we generated 852 high-quality short-read draft genome sequences of isolates from patient blood cultures in a single hospital from 2010 to 2022. A total of 80 previously recognized sequence types (ST) and five major clonal complexes are present in the population. Two frequently detected lineages, ST5 and ST8 exhibited fluctuating demographic structures throughout their histories. The rise and fall in their population growth coincided with the acquisition of antimicrobial resistance, mobile genetic elements, and superantigen genes, thus shaping the accessory genome structure across the entire population. These results reflect undetected selective events and changing ecology of multidrug-resistant in the bloodstream.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076216 | PMC |
http://dx.doi.org/10.1038/s44259-024-00032-9 | DOI Listing |
Water Res
January 2025
Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 565-0871, Japan. Electronic address:
Treated effluent of wastewater treatment plants (WWTPs) are major sources of extracellular antimicrobial resistance genes (eARGs) into aquatic environments. This study aimed to clarify the fate and origins of eARGs from influent to treated effluent at a full-scale WWTP. The compositions of eARG and intracellular ARG (iARG) were acquired via shotgun metagenomic sequencing in influent wastewater, activated sludge, and treated effluent of the target WWTP, where identical wastewater was treated by conventional activated sludge (CAS) and membrane bioreactor (MBR) processes.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Microbiology and Hygiene, Mymensingh, Bangladesh.
Pseudomonas aeruginosa (P. aeruginosa) is a major pathogen associated conditions like septicaemia, respiratory disorders, and diarrhoea in poultry, particularly in Japanese quail (Coturnix japonica). The infection causes huge economical losses due to its high transmissibility, mortality and zoonotic potential.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Veterinary Science, Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand.
Background: In China, brucellosis has resurfaced recently with a discernible spatial distribution, particularly affecting dairy herds and small ruminant populations. However, limited dissemination of knowledge, attitudes, and practices (KAP) for brucellosis control exists among farmers and animal health staff. This study aimed to assess the KAP of brucellosis control and prevention in animal health staff and farmers, with the goal of educating the public regarding the application of efficient brucellosis control and prevention strategies.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biochemistry and Molecular Biology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
Escherichia coli is one of the critical One Health pathogens due to its vast array of virulence and antimicrobial resistance genes. This study used multiplex PCR to determine the occurrence of virulence genes bfp, ompA, traT, eaeA, and stx1 among 50 multidrug-resistant (MDR) E. coli isolates from humans (n = 15), animals (n = 29), and the environment (n = 6) in Dar es Salaam, Tanzania.
View Article and Find Full Text PDFPLoS One
January 2025
Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia.
Microorganisms tend to accumulate on surfaces, forming aggregates such as biofilms, which grant them resistance to various environmental stressors and antimicrobial agents. This ability has hindered the effective treatment of diseases caused by pathogenic microorganisms, including Salmonella, which is responsible for a significant number of deaths worldwide. This study aimed to compare the metabolic profiles of planktonic and sessile cells of Salmonella Enteritidis using a metabolomics approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!