Quantification of water exchange across the blood-brain barrier using noncontrast MR fingerprinting.

Magn Reson Med

Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK.

Published: October 2024

Purpose: A method is proposed to quantify cerebral blood volume ( ) and intravascular water residence time ( ) using MR fingerprinting (MRF), applied using a spoiled gradient echo sequence without the need for contrast agent.

Methods: An in silico study optimized an acquisition protocol to maximize the sensitivity of the measurement to and changes. Its accuracy in the presence of variations in , , and was evaluated. The optimized protocol (scan time of 19 min) was then tested in a exploratory healthy volunteer study (10 volunteers, mean age 24 3, six males) at 3 T with a repeat scan taken after repositioning to allow estimation of repeatability.

Results: Simulations show that assuming literature values for and , no variation in , while fitting only and , leads to large errors in quantification of and , regardless of noise levels. However, simulations also show that matching , , , and , simultaneously is feasible at clinically achievable noise levels. Across the healthy volunteers, all parameter quantifications fell within the expected literature range. In addition, the maps show good agreement between hemispheres suggesting physiologically relevant information is being extracted. Expected differences between white and gray matter (p < 0.0001) and (p < 0.0001) are observed, and show no significant differences, p = 0.4 and p = 0.6, respectively. Moderate to excellent repeatability was seen between repeat scans: mean intra-class correlation coefficient of , , , and .

Conclusion: We demonstrate that regional simultaneous quantification of , , , and using MRF is feasible in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.30127DOI Listing

Publication Analysis

Top Keywords

noise levels
8
quantification water
4
water exchange
4
exchange blood-brain
4
blood-brain barrier
4
barrier noncontrast
4
noncontrast fingerprinting
4
fingerprinting purpose
4
purpose method
4
method proposed
4

Similar Publications

Chemical release data are essential for performing chemical risk assessments to understand the potential exposures arising from industrial processes. Often, these data are unknown or unavailable and must be estimated. A case study of volatile organic compound releases during extrusion-based additive manufacturing is used here to explore the viability of various regression methods for predicting chemical releases to inform chemical assessments.

View Article and Find Full Text PDF

F-Florbetaben (FBB) uptake in the supratentorial cortex is indicative of amyloid positivity. Due to PET's low spatial resolution, image noise, and spill-over of signal from adjacent white-matter into gray-matter, there are inconsistencies in ratings among trained readers. A set of 264 F-Florbetaben (amyloid) PET/MRI exams were reconstructed using conventional ordered subset expectation maximization (OSEM) method and MR-guided block sequential regularized expectation maximization (MRgBSREM) method.

View Article and Find Full Text PDF

 Sickle cell anemia (SCA) is a genetic disorder with clinical manifestations due to circulatory changes, leading to adverse effects on the auditory system that might impact auditory processing, such as auditory discrimination and speech perception ability. This condition is associated with the severity level of anemia.  The purpose of the present study was to investigate the influence of anemia severity on auditory discrimination ability and speech perception in noise among SCA patients with normal hearing sensitivity.

View Article and Find Full Text PDF

ICoN: integration using co-attention across biological networks.

Bioinform Adv

November 2024

Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States.

Motivation: Molecular interaction networks are powerful tools for studying cellular functions. Integrating diverse types of networks enhances performance in downstream tasks such as gene module detection and protein function prediction. The challenge lies in extracting meaningful protein feature representations due to varying levels of sparsity and noise across these heterogeneous networks.

View Article and Find Full Text PDF

Lifting of travel restrictions brings additional noise in COVID-19 surveillance through wastewater-based epidemiology in post-pandemic period.

Water Res

January 2025

Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia. Electronic address:

The post-pandemic world still faces ongoing COVID-19 infections, although international travel has returned to pre-pandemic conditions. Wastewater-based epidemiology (WBE) is considered an efficient tool for the population-wide surveillance of COVID-19 infections during the pandemic. However, the performance of WBE in post-pandemic era with travel restrictions lifted remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!