Background: With the accumulating omics data, an efficient and time-saving transient assay to express target genes is desired. Mesophyll protoplasts, maintaining most stress-physiological responses and cellular activities as intact plants, offer an alternative transient assay to study target genes' effects on heat and oxidative stress responses.

Results: In this study, a perennial ryegrass (Lolium perenne L.) mesophyll protoplast-based assay was established to effectively over- or down-regulate target genes. The relative expression levels of the target genes could be quantified using RT-qPCR, and the effects of heat and HO-induced oxidative stress on protoplasts' viability could be quantitatively measured. The practicality of the assay was demonstrated by identifying the potential thermos-sensor genes LpTT3.1/LpTT3.2 in ryegrass that over-expressing these genes significantly altered protoplasts' viability rates after heat stress.

Conclusion: This protoplast-based rapid stress regulatory gene identification assay was briefed as 'PRIDA' that will complement the stable genetic transformation studies to rapidly identify candidate stress-regulatory genes in perennial ryegrass and other grass species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11080139PMC
http://dx.doi.org/10.1186/s13007-024-01192-5DOI Listing

Publication Analysis

Top Keywords

perennial ryegrass
12
target genes
12
heat oxidative
8
stress-regulatory genes
8
genes perennial
8
transient assay
8
effects heat
8
oxidative stress
8
protoplasts' viability
8
genes
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!