Radial Reaction-Diffusion-Advection (RDA) fronts for A + B → C reactions find wide applications in many natural and technological processes. In liquid solutions, their dynamics can be perturbed by buoyancy-driven convection due to concentration gradients across the front. In this context, we conducted microgravity experiments aboard a sounding rocket, in order to disentangle dispersion and buoyancy effects in such fronts. We studied experimentally the dynamics due to the radial injection of A in B at a constant flow rate, in absence of gravity. We compared the obtained results with numerical simulations using either radial one- (1D) or two-dimensional (2D) models. We showed that gravitational acceleration significantly distorts the RDA dynamics on ground, even if the vertical dimension of the reactor and density gradients are small. We further quantified the importance of such buoyant phenomena. Finally, we showed that 1D numerical models with radial symmetry fail to predict the dynamics of RDA fronts in thicker geometries, while 2D radial models are necessary to accurately describe RDA dynamics where Taylor-Aris dispersion is significant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082159 | PMC |
http://dx.doi.org/10.1038/s41526-024-00390-8 | DOI Listing |
Eur Phys J E Soft Matter
January 2025
Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada.
We present a simple and inexpensive method for measuring weak cohesive interactions. This technique is applied to the specific case of oil droplets with a depletion interaction, dispersed in an aqueous solution. The experimental setup involves creating a short string of droplets while immobilizing a single droplet.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Dept. of Civil Engineering, Indian Institute of Technology (IIT) Bombay, Mumbai, 400076, Maharashtra, India. Electronic address:
Active saltwater intrusion (ASWI) accelerates and intensifies salinization due to buoyancy force-induced density differences and concurrent inland fresh groundwater flow. This study investigates saline groundwater (SGW) pumping as a remediation technique for ASWI through experimental and field-scale analyses in a layered aquifer system characterised by diminishing permeability with depth. Experiments demonstrated that higher permeability layers reduced length of intrusion (Ltoe) whereas lower permeability layers restricted vertical displacement.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany.
We experimentally demonstrate that the coacervation of a biopolymer can trigger a hydrodynamic instability when a coacervate is formed upon injection of a xanthan gum dispersion into a cationic surfactant (CTAB) solution. The local increase of the viscosity due to the coacervate formation induces a viscous fingering instability. Three characteristic displacement regimes were observed: a viscous fingering dominated regime, a buoyancy-controlled "volcano" regime and a "fan"-like regime determined by the coacervate membrane dynamics.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2024
Kazakh British Technical University, Almaty, Republic of Kazakhstan.
In the paper, a mathematical model was constructed that describes the specifications of the wind flow and the dispersion of pollutants, taking into account the variable temperature on the roadway surface, which varies depending on the time for some quarter of the city of Almaty. The impact of the traffic tidal flow was studied based on the data of measuring passing vehicles as a source of pollution by the CFD and on the spatial distribution of pollutants for various types of pollution. A test problem was performed to validate the numerical algorithm and the mathematical model.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
Adjustable wettability is important for various fields, such as droplet manipulation and controlled surface adhesion. Herein, we present high-resolution 3D stretchable structures with tunable superhydrophobicity, fabricated by a stereolithography-based printing process. The printing compositions comprise nonfluorinated monomers based on silicone urethane with dispersed hydrophobic silica particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!