Bioaerosols generated during toilet flushing can contribute to the spread of airborne pathogens and cross-contamination in indoor environments. This presents an increased risk of fomite-mediated or aerosol disease transmission. This study systematically investigated the factors contributing to increased bioaerosol exposure following toilet flushing and developed an empirical model for predicting the exposure-relevant bioaerosol concentration. Air in a toilet cubicle was sampled by impaction after seeding with Clostridium difficile spores. Design of Experiments (DoE) main effects screening and full factorial design approaches were then employed to investigate the significant factors that heighten the risk of exposure to bioaerosols post-flush. Our findings reveal that the inoculated bacterial concentration (C), time elapsed after flushing (t), lateral distance (d), and mechanical ventilation (v) are significant predictors of bioaerosol concentration, with p-values < 0.05. The interaction term, C × d showed a marked increase in bioaerosol concentration up to 232 CFU/m at the closest proximity and highest pathogen load. The interplay of C and t (C × t) demonstrated a time-dependent attenuation of bioaerosol viability, with concentrations peaking at 241 CFU/m immediately post-flush and notably diminishing over time. The lateral distance and time post-flush (d × t) interaction also revealed a gradual decrease in bioaerosol concentration, highlighting the effectiveness of spatial and temporal dilution in mitigating bioaerosol exposure risks. Furthermore, there is an immediate rise in relative humidity levels post-flush, impacting the air quality in the toilet environment. This study not only advances our understanding of exposure pathways in determining bioaerosol exposure, but also offers pivotal insights for designing targeted interventions to reduce bioaerosol exposure. Recommendations include designing public toilets with antimicrobial surfaces, optimizing ventilation, and initiating timely disinfection protocols to prioritise surfaces closest to the toilet bowl during peak exposure periods, thereby promoting healthier indoor environments and safeguarding public health in high-traffic toilet settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082142 | PMC |
http://dx.doi.org/10.1038/s41598-024-61039-w | DOI Listing |
Microorganisms
December 2024
School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
Multiple human and plant pathogens are dispersed and transmitted as bioaerosols (e.g., , SARS-CoV-2, , , spp.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Institut de Recherche Robert-Sauvé en Santé Et en Sécurité du Travail (IRSST), Montréal, Québec, Canada.
MethodsX
June 2025
Qatar Environment and Energy Research Institue (QEERI), Hamad Bin Khalifa University, Doha, Qatar.
Bioaerosols, pose potential health risks, yet quantitative assessments of non-carcinogenic risks from bioaerosol inhalation are limited. This study introduces a novel approach for assessing non-carcinogenic health risks using bioaerosol exposure data. The method employs the Average Daily Dose and Hazard Quotient (HQ) metrics, adapted from US Environmental Protection Agency guidelines, with the Reference Dose (RfD) based on thresholds from the National Institute of Occupational Safety and Health and the American Conference of Governmental Industrial Hygienists.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong SAR, China. Electronic address:
Exposure to airborne bacteria poses significant risks to human health, highlighting the need for on-site sampling and detection to facilitate control and early warning. Commercial dissolvable gelatin filters are efficient samplers but can only dissolve in warm water. This study developed nanofiber gelatin filters that can rapidly dissolve in room-temperature water, facilitating on-site sampling and detecting of airborne bacteria when combined with adenosine triphosphate (ATP) analysis.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
Indoor air quality (IAQ) significantly affects human health, with pollutants such as organic, inorganic substances, and biological contaminants contributing to various respiratory, neurological, and immunological diseases. In this review, we highlighted the need for advanced air filtration technologies to mitigate these pollutants, which are emitted from household products, building materials, combustion processes, and bioaerosols. While traditional HVAC systems and mechanical filtration methods have been effective, they are often energy-intensive and limited in their ability to capture specific pollutants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!