The supercritical antisolvent (SAS) process was a green alternative to improve the low bioavailability of insoluble drugs. However, it is difficult for SAS process to industrialize with limited production capacity. A coaxial annular nozzle was used to prepare the microcapsules of aprepitant (APR) and polyvinylpyrrolidone (PVP) by SAS with N, N-Dimethylformamide (DMF) as solvent. Meanwhile, the effects of polymer/drug ratio, operating pressure, operating temperature and overall concentration on particles morphology, mean particle diameter and size distribution were analyzed. Microcapsules with mean diameters ranging from 2.04 μm and 9.84 μm were successfully produced. The morphology, particle size, thermal behavior, crystallinity, drug content, drug dissolution and residual amount of DMF of samples were analyzed. The results revealed that the APR drug dissolution of the microcapsules by SAS process was faster than the unprocessed APR. Furthermore, the drug powder collected every hour is in the kilogram level, verifying the possibility to scale up the production of pharmaceuticals employing the SAS process from an industrial point of view.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082215PMC
http://dx.doi.org/10.1038/s41598-024-60323-zDOI Listing

Publication Analysis

Top Keywords

sas process
16
supercritical antisolvent
8
morphology particle
8
drug dissolution
8
apr drug
8
process
5
sas
5
pvp/aprepitant microcapsules
4
microcapsules produced
4
produced supercritical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!