Biochar boosted high oleic peanut production with enhanced root development and biological N fixation by diazotrophs in a sand-loamy Primisol.

Sci Total Environ

Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China. Electronic address:

Published: July 2024

Peanut yield and quality face significant threats due to climate change and soil degradation. The potential of biochar technology to address this challenge remains unanswered, though biochar is acknowledged for its capacity to enhance the soil microbial community and plant nitrogen (N) supply. A field study was conducted in 2021 on oil peanuts grown in a sand-loamy Primisol that received organic amendments at 20 Mg ha. The treatments consisted of biochar amendments derived from poultry manure (PB), rice husk (RB), and maize residue (MB), as well as manure compost (OM) amendment, compared to no organic amendment (CK). In 2022, during the second year after amendment, samples of bulk topsoil, rooted soil, and plants were collected at the peanut harvest. The analysis included the assessment of soil quality, peanut growth traits, microbial community, nifH gene abundance, and biological N fixation (BNF) rate. Compared to the CK, the OM treatment led to an 8 % increase in peanut kernel yield, but had no effect on kernel quality in terms of oil production. Conversely, both PB and MB treatments increased kernel yield by 10 %, whereas RB treatment showed no change in yield. Moreover, all biochar amendments significantly improved oilseed quality by 10-25 %, notably increasing the proportion of oleic acid by up to 70 %. Similarly, while OM amendment slightly decreased root development, all biochar treatments significantly enhanced root development by over 80 %. Furthermore, nodule number, fresh weight per plant, and the nifH gene abundance in rooted soil remained unchanged under OM and PB treatments but was significantly enhanced under RB and MB treatments compared to CK. Notably, all biochar amendments, excluding OM, increased the BNF rate and N-acetyl-glucosaminidase activity. These changes were attributed to alterations in soil aggregation, moisture retention, and phosphorus availability, which were influenced by the diverse physical and chemical properties of biochars. Overall, maize residue biochar contributed synergistically to enhancing soil fertility, peanut yield, and quality while also promoting increased root development, a shift in the diazotrophic community and BNF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173061DOI Listing

Publication Analysis

Top Keywords

root development
16
biochar amendments
12
biochar
8
enhanced root
8
biological fixation
8
sand-loamy primisol
8
peanut yield
8
yield quality
8
microbial community
8
maize residue
8

Similar Publications

Objective: Scientific justification of the methodology for calculating radiation internal doses from 137Cs and 134Cs intake for residents of Ukrainian settlements radioactively contaminated as a result of the Chornobyl (Chernobyl) accident in which measurements of incorporated radiocesium isotopes in humans using whole-body counters (WBC) were not carried out.

Materials And Methods: The paper presents a new methodology for reconstructing doses due to internal irradiation from Chornobyl fallout for both surface (in 1986) and root (in 1987-2023) contamination of vegetation with 137Cs and 134Cs and their transfer into the human body. The methodology for calculating the dose due to surface contamination of vegetation was based on the theoretical model of the transfer of radiocesium isotopes through the food chain with further adjustment of this model to the results of WBC measurements carried out between 15 July and 31 December 1986.

View Article and Find Full Text PDF

Integrating machine learning and remote sensing for long-term monitoring of chlorophyll-a in Chilika Lagoon, India.

Environ Monit Assess

December 2024

Department of Forest, Environment, and Climate Change, Chilika Development Authority, Barkul, Odisha, India.

Chlorophyll-a (Chla) is recognized as a key indicator of water quality and ecological health in aquatic ecosystems, offering valuable insights into ecosystem dynamics and changes over time. This study aimed to to develop and validate a robust ML model for estimating Chla using Landsat data, produce a time series of Chl a maps, and analyze the spatiotemporal variability of Chla in Chilika Lagoon, Asia's largest brackish water lagoon. Nine ML regression models, including Extreme Gradient Boost, Support Vector Regression, Random Forest, and Bagging Regression, were evaluated using Landsat imagery and field data.

View Article and Find Full Text PDF

Receptor kinase LecRK-I.9 regulates cell wall remodelling during lateral root formation in Arabidopsis.

J Exp Bot

December 2024

Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France.

Assembling and remodelling the cell wall is essential for plant development. Cell wall dynamics is controlled by cell wall proteins, polysaccharide biosynthesis, and a variety of sensor and receptor systems. LecRK-I.

View Article and Find Full Text PDF

Role of bacterial quorum sensing in plant growth promotion.

World J Microbiol Biotechnol

December 2024

Department of Microbiology, Government Science College, Vankal, Surat, 394 430, Gujarat, India.

Quorum sensing (QS) also known as bacterial cell-cell communication or bacterial crosstalk is a phenomenon regulating various bacterial traits that can affect plant growth and defence. Similarities in the structure of root exudates and bacterial signalling molecules have tremendous implications governing the plant heath. The rhizosphere ecosystem being an excellent example of plant-microbe and microbe-microbe interactions harbours a variety of microorganisms exhibiting quorum sensing.

View Article and Find Full Text PDF

The expansion of Semi-Autotrophic Hydroponics technology to address the issue of multiplying and disseminating virus-free planting materials for vegetatively propagated crops is challenged by the utilization of imported substrate, namely, KlasmannTS3. In this study, we evaluated the growth parameters and cutting production of cassava genotypes during three subsequent plantlet production cycles using three single substrates, namely, KlasmannTS3 (K), vermiculite (V), and local peat (P), and three blended substrates. The blended substrates were a combination of 25% K and 75% P (K25P75), a combination of V and P at respective rates of 25% and 75% (V25P75), and respective rates of 10% and 90% (V10P90).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!