The role of phosphate-coordinating arginine residues in the thermal stability of uridine phosphorylase from Shewanella oneidensis MR-1 was investigated by mutation analysis. Uridine phosphorylase mutant genes were constructed by site-directed mutagenesis. The enzyme mutants were prepared and isolated, and their kinetic parameters were determined. It was shown that all these arginine residues play an important role both in the catalysis and thermal stability. The arginine residues 176 were demonstrated to form a kind of a phosphate pore in the hexameric structure of uridine phosphorylase, and they not only contribute to thermal stabilization of the enzyme but also have a regulatory function. The replacement of arginine 176 with an alanine residue resulted in a significant decrease in the kinetic stability of the enzyme but led to a twofold increase in its specific activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2024.05.008 | DOI Listing |
J Biomol Struct Dyn
February 2025
Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.
The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction.
View Article and Find Full Text PDFACS Nano
December 2024
School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P. R. China.
Chemotherapy is the primary treatment option for pancreatic cancer, although nanocarrier-based drug delivery systems often struggle with multiple physiological barriers, limiting their therapeutic efficacy. Here, we developed a pH/reactive oxygen species (ROS) dual-sensitive self-adaptive nanocarrier (DAT) encapsulating camptothecin (CPT), an analog of the pancreatic chemotherapeutic drug irinotecan (CPT-11), to enhance chemotherapy outcomes in orthotopic pancreatic cancer by addressing multiple physiological barriers. The nanocarrier features a peripherally positively charged arginine (Arg) residue on DAT and is masked with an acid-labile 2,3-dimethylmaleic anhydride (DA) to improve circulation time.
View Article and Find Full Text PDFACS Catal
December 2024
Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States.
The ethylene-forming enzyme (EFE) is a Fe(II)/2-oxoglutarate (2OG) and l-arginine (l-Arg)-dependent oxygenase that primarily decomposes 2OG into ethylene while also catalyzing l-Arg hydroxylation. While the hydroxylation mechanism in EFE is similar to other Fe(II)/2OG-dependent oxygenases, the formation of ethylene is unique. Various redesign strategies have aimed to increase ethylene production in EFE, but success has been limited, highlighting the need for alternate approaches.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA.
Histatin 5 (Hst5) is a 24-amino-acid peptide naturally present in human saliva that has been proposed as a potential antifungal therapeutic. However, Hst5 is susceptible to degradation by secreted aspartyl proteases (Saps) produced by Candida albicans, which could limit its efficacy as a therapeutic. To better understand the role of the lysine residues of Hst5 in proteolysis by C.
View Article and Find Full Text PDFMol Omics
December 2024
Department of Chemistry and Biochemistry, University of Texas at Arlington, Box 19065, 700 Planetarium Place, Room 130, Arlington, TX 76019, USA.
Designing reagents for protein labeling is crucial for investigating cellular events and developing new therapeutics. Historically, much effort has been focused on labeling lysine and arginine residues due to their abundance on the protein periphery. The chemo-selectivity of these reagents is a challenging yet crucial parameter for deciphering properties specifically associated with the targeted amino acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!