Silicate-based bioactive glass nano/microspheres hold significant promise for bone substitution by facilitating osteointegration through the release of biologically active ions and the formation of a biomimetic apatite layer. Cu-doping enhances properties such as pro-angiogenic and antibacterial behavior. While sol-gel methods usually yield homogeneous spherical particles for pure silica or binary glasses, synthesizing poorly aggregated Cu-doped ternary glass nano/microparticles without a secondary CuO crystalline phase remains challenging. This article introduces an alternative method for fabricating Cu-doped ternary microparticles using sol-gel chemistry combined with spray-drying. The resulting microspheres exhibit well-defined, poorly aggregated particles with spherical shapes and diameters of a few microns. Copper primarily integrates into the microspheres as Cu nanoparticles and as Cu within the amorphous network. This doping affects silica network connectivity, as calcium and phosphorus are preferentially distributed in the glass network (respectively as network modifiers and formers) or involved in amorphous calcium phosphate nano-domains depending on the doping rate. These differences affect the interaction with simulated body fluid. Network depolymerization, ion release (SiO, Ca, PO, Cu), and apatite nanocrystal layer formation are impacted, as well as copper release. The latter is mainly provided by the copper involved in the silica network and not from metal nanoparticles, most of which remain in the microspheres after interaction. This understanding holds promising implications for potential therapeutic applications, offering possibilities for both short-term and long-term delivery of a tunable copper dose. STATEMENT OF SIGNIFICANCE: A novel methodology, scalable to industrial levels, enables the synthesis of copper-doped ternary bioactive glass microparticles by combining spray-drying and sol-gel chemistry. It provides precise control over the copper percentage in microspheres. This study explores the influence of synthesis conditions on the copper environment, notably Cu and Cu ratios, characterized by EPR spectroscopy, an aspect poorly described for copper-doped bioactive glass. Additionally, copper indirectly affects silica network connectivity and calcium/phosphorus distribution, as revealed by SSNMR. Multiscale characterization illustrates how these features impact acellular degradation in simulated body fluid, highlighting the therapeutic potential for customizable copper dosing to address short- and long-term needs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2024.05.003 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares Universirty, Tehran, Iran.
One of the most effective ways to solve the problems caused by the presence of steel implants in the body is to apply a coating to them. This study aims to develop and optimize composite coatings of magnesium oxide (MgO), 58S bioactive glass (BG), and N-carboxymethyl chitosan (N-CMC) on stainless steel (SS316L) substrates using the electrophoretic deposition (EPD) method. The synthesized materials were characterized using FTIR, XRD, and SEM to confirm their structure and morphology prior to coating.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan.
This study investigated the effects of resin composites (RCs) containing surface pre-reacted glass ionomer (S-PRG) filler on the dentin microtensile bond strength (μTBS) of HEMA-free and HEMA-containing universal adhesives (UAs). Water sorption (WS) and solubility (SL), degree of conversion (DC), and ion release were measured. The UAs BeautiBond Xtreme (BBX; 0% HEMA), Modified Adhesive-1 (E-BBX1; 5% HEMA), Modified Adhesive-2 (E-BBX2; 10% HEMA), and two 2-step self-etch adhesives (2-SEAs): FL-BOND II (FBII; with S-PRG filler) and silica-containing adhesive (E-FBII) were used.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, 70111 Szczecin, Poland.
Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.
View Article and Find Full Text PDFGels
December 2024
Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo 315211, China.
Many tissues exhibit structural anisotropy, which imparts orientation-specific properties and functions. However, recapitulating the cellular patterns found in anisotropic tissues presents a remarkable challenge, particularly when using soft and wet hydrogels. Herein, we develop self-assembled anisotropic magnetic FeO micropatterns on polyethylene glycol hydrogels utilizing dipole-dipole interactions.
View Article and Find Full Text PDFAdv Mater
December 2024
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
The precise manipulation of PANoptosis, a newly defined cell death pathway encompassing pyroptosis, apoptosis, and necroptosis, is highly desired to achieve safer cancer immunotherapy with tumor-specific inflammatory responses and minimal side effects. Nonetheless, this objective remains a formidable challenge. Herein, an "AND" logic-gated strategy for accurately localized PANoptosis activation, utilizing composite 3D-printed bioactive glasses scaffolds integrated with epigenetic regulator-loaded porous piezoelectric SrTiO nanoparticles is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!