A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structure characterization and intestinal immune promotion effect of polysaccharide purified from Alhagi camelorum Fisch. | LitMetric

AI Article Synopsis

  • This study focused on analyzing the structure of Alhagi camelorum Fischa polysaccharide (aAP) and its effects on the intestinal activity of mice.
  • The composition of aAP included various sugars like fucose, arabinose, and galactose, and its molecular weight was found to be 22.734 kDa, confirmed through several analytical techniques.
  • Results indicated that aAP significantly boosted immune responses in mice, enhancing spleen and thymus function, increasing antibody levels, and improving intestinal health after 7 days of administration.

Article Abstract

This study investigated the structure of acid Alhagi camelorum Fischa polysaccharide (aAP) and its impact on intestinal activity in mice. The results showed that aAP comprised of the fucose, arabinose, rhamnose, galactose, glucose, xylose, mannose, galacturonic acid, glucuronic acid with the molar ratio of 0.81:14.97:10.84:11.14:3.26:0.80:0.80:54.92:2.47 with the molecular weight (Mw) of 22.734 kDa. Additionally, the composition of aAP was assessed via FT-IR, methylation, and NMR analyses, indicating that the backbone of the aAP was consisted of →4)-α-D-GalpA-6-OMe-(1 → 4)-α-GalpA-(1 → and →4)-α-D-GalpA-6-OMe-(1 → 2)-α-L-Rhap-(1→, as well as →4)-β-D-Galp- and →5)-α-L-Araf- for the branched chain. Furthermore, ICR mice underwent intragastric administration of different concentrations of aAP for 7 consecutive days. The results showed that aAP enhanced the murine spleen and thymus indices, promoted the secretion of serum lgG antibody, intestinal lgA antibody and intestinal cytokines, improved the morphology of intestinal villi and crypts, enhanced quantity of intestinal IELs and IgA+ cells, and activated T lymphocytes and DC cells in MLNs. In summary, these findings suggest that the utilization of aAP could enhance the immune response of the murine intestinal mucosa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.132077DOI Listing

Publication Analysis

Top Keywords

alhagi camelorum
8
antibody intestinal
8
intestinal
7
aap
7
structure characterization
4
characterization intestinal
4
intestinal immune
4
immune promotion
4
promotion polysaccharide
4
polysaccharide purified
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!