Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years, with the rapid development of society, organic compounds have been released into aquatic environments in various forms, posing a significant threat to the survival of aquatic organisms. The assessment of developmental toxicity is an important part of environmental safety risk systems, helping to identify the potential impacts of organic compounds on the embryonic development of aquatic organisms and enabling early detection and warning of potential ecological risks. Additionally, binary classification models cannot accurately classify organic compounds. Therefore, it is crucial to construct a multiclassification model for predicting the developmental toxicity of organic compounds. In this study, binary and multiclassification models were developed based on the ToxCastâ„¢ Phase I chemical library and literature data. The random forest, support vector machine, extreme gradient boosting, adaptive gradient boosting, and C5.0 decision tree algorithms, as well as 8 types of molecular fingerprint were used to establish a multiclassification base model for predicting developmental toxicity through 5-fold cross-validation and external validation. Ultimately, a multiclassification ensemble model was derived through a voting method. The performance of the binary ensemble model, as measured by the balanced accuracy, was 0.918, while that of the multiclassification model was 0.819. The developmental toxicity voting ensemble model (DT-VEM) achieved accuracies of 0.804, 0.834, and 0.855. Furthermore, by utilizing the XGBoost machine learning algorithm to construct separate models for molecular descriptors and substructure molecular fingerprints, we identified several substructures and physical properties related to developmental toxicity. Our research contributes to a more detailed classification of developmental toxicity, providing a new and valuable tool for predicting the developmental toxicity effects of unknown compounds. This supplement addresses the limitations of previous tools, as it offers an enhanced ability to predict potential developmental toxicity in novel compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2024.106936 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!