Synthesizing 7T Susceptibility Weighted Imaging (SWI) from 3T SWI could offer significant clinical benefits by combining the high sensitivity of 7T SWI for neurological disorders with the widespread availability of 3T SWI in diagnostic routines. Although methods exist for synthesizing 7T Magnetic Resonance Imaging (MRI), they primarily focus on traditional MRI modalities like T1-weighted imaging, rather than SWI. SWI poses unique challenges, including limited data availability and the invisibility of certain tissues in individual 3T SWI slices. To address these challenges, we propose a Self-supervised Anatomical Continuity Enhancement (SACE) network to synthesize 7T SWI from 3T SWI using plentiful 3T SWI data and limited 3T-7T paired data. The SACE employs two specifically designed pretext tasks to utilize low-level representations from abundant 3T SWI data for assisting 7T SWI synthesis in a downstream task with limited paired data. One pretext task emphasizes input-specific morphology by balancing the elimination of redundant patterns with the preservation of essential morphology, preventing the blurring of synthetic 7T SWI images. The other task improves the synthesis of tissues that are invisible in a single 3T SWI slice by aligning adjacent slices with the current slice and predicting their difference fields. The downstream task innovatively combines clinical knowledge with brain substructure diagrams to selectively enhance clinically relevant features. When evaluated on a dataset comprising 97 cases (5495 slices), the proposed method achieved a Peak Signal-to-Noise Ratio (PSNR) of 23.05 dB and a Structural Similarity Index (SSIM) of 0.688. Due to the absence of specific methods for 7T SWI, our method was compared with existing enhancement techniques for general 7T MRI synthesis, outperforming these techniques in the context of 7T SWI synthesis. Clinical evaluations have shown that our synthetic 7T SWI is clinically effective, demonstrating its potential as a clinical tool.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2024.103184DOI Listing

Publication Analysis

Top Keywords

swi
19
swi synthesis
12
swi swi
12
self-supervised anatomical
8
anatomical continuity
8
continuity enhancement
8
imaging swi
8
swi data
8
paired data
8
downstream task
8

Similar Publications

BRM (SMARCA2) and BRG1 (SMARCA4) are mutually exclusive ATPase subunits of the mSWI/SNF (BAF) chromatin remodeling complex. BAF is an attractive therapeutic target because of its role in transcription, and mutations in the subunits of BAF are common in cancer and neurological disorders. Herein, we report the discovery of compound () as a potent allosteric inhibitor of the dual ATPase subunits from a high-throughput screening hit with a BRM IC of ∼27 μM.

View Article and Find Full Text PDF

Risk assessment and quality management in AIO based on CT-linac for nasopharyngeal carcinoma: An improved FMEA and FTA approach.

Med Phys

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.

Article Synopsis
  • AIO radiotherapy integrates all conventional steps into one device, improving efficiency and reducing errors for cancer patients while facing challenges like software complexity and AI reliance.
  • A risk assessment using FMEA and FTA was conducted to evaluate the quality management measures for nasopharyngeal carcinoma treatment.
  • Results showed 86 failure modes identified, with risk priority numbers indicating varying levels of risk, emphasizing the importance of implementing quality management measures for safety.
View Article and Find Full Text PDF

Deep penetrating nevi (DPNs) are characterized by activating mutations in the MAP kinase and Wnt/beta-catenin pathways that result in large melanocytes with increased nuclear atypia, cytoplasmic pigmentation, and often mitotic activity. Together with a lack of maturation, this constellation of findings creates challenges for pathologists to distinguish deep penetrating nevus (DPN) from DPN-like melanoma. To assess the utility of next generation sequencing (NGS) in resolving this diagnostic dilemma, we performed NGS studies on 35 lesions including 24 DPNs and 11 DPN-like melanomas to characterize the specific genomic differences between the two groups and elucidate the genetic events involved in malignant transformation of DPNs.

View Article and Find Full Text PDF

Purpose: MAK683, a first-in-class and highly selective allosteric inhibitor of the embryonic ectoderm development subunit of polycomb repressive complex 2, has shown sustained antitumor activity in tumor xenograft models. This first-in-human phase 1/2 study evaluated the safety, pharmacokinetics (PK), and clinical activity of single-agent MAK683 in advanced malignancies.

Methods: MAK683 was administered fasted once daily or twice daily continuously in 28-day treatment cycles.

View Article and Find Full Text PDF

Background: Isocitrate dehydrogenase (IDH) wild-type (IDH) glioblastomas (GB) are more aggressive and have a poorer prognosis than IDH mutant (IDH) tumors, emphasizing the need for accurate preoperative differentiation. However, a distinct imaging biomarker for differentiation mostly lacking. Intratumoral thrombosis has been reported as a histopathological biomarker for GB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!