Rieske oxygenases (ROs) are a diverse metalloenzyme class with growing potential in bioconversion and synthetic applications. We postulated that ROs are nonetheless underutilized because they are unstable. Terephthalate dioxygenase (TPA PDB ID 7Q05) is a structurally characterized heterohexameric αβ RO that, with its cognate reductase (TPA), catalyzes the first intracellular step of bacterial polyethylene terephthalate plastic bioconversion. Here, we showed that the heterologously expressed TPA/TPA system exhibits only ~300 total turnovers at its optimal pH and temperature. We investigated the thermal stability of the system and the unfolding pathway of TPA through a combination of biochemical and biophysical approaches. The system's activity is thermally limited by a melting temperature (T) of 39.9°C for the monomeric TPA, while the independent T of TPA is 50.8°C. Differential scanning calorimetry revealed a two-step thermal decomposition pathway for TPA with T values of 47.6 and 58.0°C (ΔH = 210 and 509 kcal mol, respectively) for each step. Temperature-dependent small-angle x-ray scattering and dynamic light scattering both detected heat-induced dissociation of TPA subunits at 53.8°C, followed by higher-temperature loss of tertiary structure that coincided with protein aggregation. The computed enthalpies of dissociation for the monomer interfaces were most congruent with a decomposition pathway initiated by β-β interface dissociation, a pattern predicted to be widespread in ROs. As a strategy for enhancing TPA stability, we propose prioritizing the re-engineering of the β subunit interfaces, with subsequent targeted improvements of the subunits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081424PMC
http://dx.doi.org/10.1002/pro.4997DOI Listing

Publication Analysis

Top Keywords

tpa
8
pathway tpa
8
decomposition pathway
8
understanding stability
4
stability plastic-degrading
4
plastic-degrading rieske
4
rieske iron
4
iron oxidoreductase
4
oxidoreductase system
4
system rieske
4

Similar Publications

Hypochlorous acid (HClO) is a well-known inflammatory signaling molecule, while lipid droplets (LDs) are dynamic organelles closely related to inflammation. Using organic small-molecule fluorescence imaging technology to target LDs for precise monitoring of HClO is one of the most effective methods for diagnosing inflammation-related diseases. A thorough investigation of how probes detect biological markers and the influencing factors can aid in the design of probe molecules, the selection of high-performance tools, and the accuracy of disease detection.

View Article and Find Full Text PDF

The Predictive Value of Multifidus Degeneration in Osteoporotic Vertebral Compression Fracture Patients with Kyphosis Deformity.

Spine J

January 2025

Orthopedic Department, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, 49 North Garden Road, Haidian District, Beijing 100191, China; Beijing Key Laboratory of Spinal Disease Research, 49 North Garden Road, Haidian District, Beijing 100191, China. Electronic address:

Background Context: Osteoporotic vertebral compression fracture (OVCF) causes pain, kyphosis and neurological damage, which significantly affect patients' quality of life. Patients with OVCF are often elderly and have severe osteoporosis, which makes preoperative symptom more serious, postoperative recovery worse and the incidence of postoperative complications high. The paraspinal muscles have been well studied in adult spinal deformities, but there is no conclusive evidence that their findings can be applied to OVCF.

View Article and Find Full Text PDF

Unusual high fluorescence of a 7,7'-diazaisoindigo derivative: A photophysical study.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain. Electronic address:

7,7'-Diazaisoindigos are π-conjugated compounds but with poor luminescence properties. Their poor luminescence is generally attributed to the twisting around the central C-C bond in the excited state which favors non-radiative decay. We have found an unusual high fluorescence quantum yield (Φ ≈ 15 %) in a N,N‑Octyl-7,7'-diazaisoindigo derivative incorporating two triphenylamine (TPA) subunits at 5,5'-positions (called compound 12).

View Article and Find Full Text PDF

Immobilizing organic chromophores within the rigid framework of metal-organic frameworks (MOFs) augments fluorescence by effectively curtailing molecular motions. Yet, the substantial interspaces and free volumes inherent to MOFs can undermine photoluminescence efficiency, as they partially constrain intramolecular dynamics. In this study, we achieved optimization of both one- and two-photon excited fluorescence by incorporating linkers into an interpenetrated tetraphenylethene-based MOF (TPE-MOF).

View Article and Find Full Text PDF

Determination of hydrogen peroxide (HO) is of great importance in many systems for controlling the quality of products, food safety, and medical diagnostics. In this work, a highly sensitive photoluminescence film sensor was synthesized based on chitosan (CS), polyvinyl alcohol (PVA), and terephthalic acid (TPA), in the presence of copper (II) ions for determination of hydrogen peroxide. TPA was used as a sensitive probe for detection of hydroxyl radicals produced in a photo-Fenton-like process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!