Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aerogel fibers are good thermal insulators, suitable for weaving, and show potential as the next generation of intelligent textiles that can effectively reduce heat consumption for personal thermal management. However, the production of continuous aerogel fibers from biomass with sufficient strength and radial elasticity remains a significant challenge. Herein, continuous gel fibers were produced via wet spinning using agarose (AG) as the matrix, 2,2,2,6,6-tetramethylpiperidine-1-oxyl radical-oxidized cellulose nanofibers (TOCNs) as the reinforcing agent, and no other chemical additives by utilizing the gelling properties of AG. Supercritical drying and chemical vapor deposition (CVD) were then used to produce hydrophobic AG-TOCN aerogel fibers (HATAFs). During CVD, the HATAF gel skeleton was covered with an isostructural silica coating. Consequently, the HATAFs can recover from radial compression under 60% strain. Moreover, the HATAFs have low densities (≤0.14 g cm), high porosities (≥91.8%), high specific surface areas (≥188 m g), moderate tensile strengths (≤1.75 MPa), excellent hydrophobicity (water contact angles of >130°), and good thermal insulating properties at different temperatures. Thus, HATAFs are expected to become a new generation of materials for efficient personal thermal management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c03509 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!