Aims: Abdominal aortic aneurysm (AAA) is a common, serious vascular disease with no effective pharmacological treatment. The nucleoside adenosine plays an important role in modulating vascular homeostasis, which prompted us to determine whether adenosine kinase (ADK), an adenosine metabolizing enzyme, modulates AAA formation via control of the intracellular adenosine level, and to investigate the underlying mechanisms.

Methods And Results: We used a combination of genetic and pharmacological approaches in murine models of AAA induced by calcium chloride (CaCl2) application or angiotensin II (Ang II) infusion to study the role of ADK in the development of AAA. In vitro functional assays were performed by knocking down ADK with adenovirus-short hairpin RNA in human vascular smooth muscle cells (VSMCs), and the molecular mechanisms underlying ADK function were investigated using RNA-sequencing, isotope tracing, and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR). The heterozygous deficiency of ADK protected mice from CaCl2- and Ang II-induced AAA formation. Moreover, specific knockout of ADK in VSMCs prevented Ang II-induced AAA formation, as evidenced by reduced aortic extracellular elastin fragmentation, neovascularization, and aortic inflammation. Mechanistically, ADK knockdown in VSMCs markedly suppressed the expression of inflammatory genes associated with AAA formation, and these effects were independent of adenosine receptors. The metabolic flux and ChIP-qPCR results showed that ADK knockdown in VSMCs decreased S-adenosylmethionine (SAM)-dependent transmethylation, thereby reducing H3K4me3 binding to the promoter regions of the genes that are associated with inflammation, angiogenesis, and extracellular elastin fragmentation. Furthermore, the ADK inhibitor ABT702 protected mice from CaCl2-induced aortic inflammation, extracellular elastin fragmentation, and AAA formation.

Conclusion: Our findings reveal a novel role for ADK inhibition in attenuating AAA via epigenetic modulation of key inflammatory genes linked to AAA pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368124PMC
http://dx.doi.org/10.1093/cvr/cvae093DOI Listing

Publication Analysis

Top Keywords

aaa formation
16
extracellular elastin
12
elastin fragmentation
12
aaa
10
adk
10
adenosine kinase
8
abdominal aortic
8
aortic aneurysm
8
epigenetic modulation
8
role adk
8

Similar Publications

Vps4a Mediates a Unified Membrane Repair Machinery to Attenuate Ischemia/Reperfusion Injury.

Circ Res

January 2025

Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).

Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.

View Article and Find Full Text PDF

Research Question: Are the combined genotypes and haplotypes of vitamin D receptor (VDR) gene polymorphisms (FokI, ApaI and TaqI) associated with susceptibility to polycystic ovary syndrome (PCOS) and metabolic features of the disease?

Design: This case-control study included 46 women with PCOS and 48 controls. Genotypes of the VDR gene were determined using the polymerase chain reaction-restriction fragment length polymorphism method. Waist circumference, and parameters of lipid and glucose metabolism were evaluated in all women.

View Article and Find Full Text PDF

Single-molecule two- and three-colour FRET studies reveal a transition state in SNARE disassembly by NSF.

Nat Commun

January 2025

State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.

SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins are the minimal machinery required for vesicle fusion in eukaryotes. Formation of a highly stable four-helix bundle consisting of SNARE motif of these proteins, drives vesicle/membrane fusion involved in several physiological processes such as neurotransmission. Recycling/disassembly of the protein machinery involved in membrane fusion is essential and is facilitated by an AAA+ ATPase, N-ethylmaleimide sensitive factor (NSF) in the presence of an adapter protein, α-SNAP.

View Article and Find Full Text PDF
Article Synopsis
  • Despite improvements in targeted therapy for Acute Myeloid Leukemia (AML), the prognosis remains poor, particularly for patients with relapsed or refractory disease.
  • Allogeneic hematopoietic stem cell transplantation (alloSCT) is the main curative option for high-risk patients, but the best conditioning approach is still uncertain for those who are chemotherapy-refractory.
  • A study on seven AML patients who received CXCR4-directed endoradiotherapy (ERT) combined with total body irradiation and chemotherapy prior to alloSCT showed promising outcomes, with 6 out of 7 patients achieving response and successful engraftment, offering insights into a potentially effective treatment strategy for advanced cases.
View Article and Find Full Text PDF

The COVID-19 virus not only has significant pathogenicity but also influences the progression of many diseases, altering patient prognosis. Cardiovascular diseases, particularly aortic aneurysms, are among the most life-threatening conditions. COVID-19 infection is reported to accelerate the progression of abdominal aortic aneurysms (AAAs) and increase the risk of rupture; however, a comprehensive understanding of the underlying mechanisms remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!