Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acute intermittent hypoxia (AIH) can induce sustained facilitation of motor output in people with spinal cord injury (SCI). Most studies of corticospinal tract excitability in humans have used 9% fraction inspired oxygen ([Formula: see text]) AIH (AIH-9%), with inconsistent outcomes. We investigated the effect of single sessions of 9% [Formula: see text] and 12% [Formula: see text] AIH (AIH-12%) on corticospinal excitability of a hand and leg muscle in able-bodied adults. Ten naïve participants completed three sessions on separate days comprising 15 epochs of 1 min of AIH-9%, AIH-12%, or sham (SHAM-21%) followed by 1 min of room air (21% [Formula: see text]) in a randomized crossover design. Motor-evoked potentials (MEPs; = 30, ∼1 mV) elicited at rest by transcranial magnetic stimulation and maximal M-waves (M) evoked by peripheral nerve stimulation were measured from the first dorsal interosseous (FDI) and tibialis anterior (TA) muscles at baseline and at ∼0, 20, 40, and 60 min post intervention. AIH-9% induced the greatest reduction in peripheral oxygen saturation (to 85% vs. 93% and 100% in AIH-12% and SHAM-21%, respectively; < 0.001) and the greatest increase in ventilation [by 22% vs. 12% and -3% in AIH-9%, AIH-12%, and SHAM-21%, respectively ( < 0.001)]. There was no difference in MEP amplitudes (%M) after any of the three conditions (AIH-9%, AIH-12%, SHAM-21%) for both the FDI ( = 0.399) and TA ( = 0.582). Despite greater cardiorespiratory changes during AIH-9%, there was no evidence of corticospinal facilitation (tested with MEPs) in this study. Further studies could explore variability in response to AIH between individuals and other methods to measure motor facilitation in people with and without spinal cord injuries. This is the first study that tests whether acute intermittent hypoxia (AIH) induces motor output facilitation in humans after two different doses of AIH (9% and 12% [Formula: see text]) and the reproducibility of participant responses after a repeat AIH intervention at 9% AIH. There was no motor output facilitation in response to either dose of AIH. The results question the effectiveness of a single 30-min session of AIH in inducing motor output facilitation, tested in this way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00010.2024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!