A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular Autonomous Pathfinder Using Deep Reinforcement Learning. | LitMetric

Molecular Autonomous Pathfinder Using Deep Reinforcement Learning.

J Phys Chem Lett

Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089, United States.

Published: May 2024

Diffusion in solids is a slow process that dictates rate-limiting processes in key chemical reactions. Unlike crystalline solids that offer well-defined diffusion pathways, the lack of similar structural motifs in amorphous or glassy materials poses great challenges in bridging the slow diffusion process and material failures. To tackle this problem, we propose an AI-guided long-term atomistic simulation approach: molecular autonomous pathfinder (MAP) framework based on deep reinforcement learning (DRL), where the RL agent is trained to uncover energy efficient diffusion pathways. We employ a Deep Q-Network architecture with distributed prioritized replay buffer, enabling fully online agent training with accelerated experience sampling by an ensemble of asynchronous agents. After training, the agents provide atomistic configurations of diffusion pathways with their energy profile. We use a piecewise nudged elastic band to refine the energy profile of the obtained pathway and the corresponding diffusion time on the basis of transition-state theory. With the MAP framework, we demonstrate atomistic diffusion mechanisms in amorphous silica with time scales comparable to experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11103691PMC
http://dx.doi.org/10.1021/acs.jpclett.4c00438DOI Listing

Publication Analysis

Top Keywords

diffusion pathways
12
molecular autonomous
8
autonomous pathfinder
8
deep reinforcement
8
reinforcement learning
8
map framework
8
energy profile
8
diffusion
7
pathfinder deep
4
learning diffusion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!