Background: A new, alternative option for patients with recurrent glioblastoma is targeted alpha therapy (TAT), in the form of a local administration of substance P (neurokinin type 1 receptor ligand, NK-1) labelled with Ac. The purpose of the study was to confirm the feasibility of quantitative SPECT imaging of Ac, in a model reproducing specific conditions of TAT. In particular, to present the SPECT calibration methodology used, as well as the results of validation measurements and their accuracy. Additionally, to discuss the specific problems related to high noise in the presented case.
Materials And Methods: All SPECT/CT scans were conducted using the Symbia T6 equipped with HE collimators, and acquired with multiple energy windows (three main windows: 440 keV, 218 keV, and 78 keV, with three lower scatter energy windows). A Jaszczak phantom with fillable cylindrical sources of various sizes was used to investigate quantitative SPECT/CT imaging characteristics. The planar sensitivity of the camera, an imaging calibration factor, and recovery coefficients were determined. Additionally, the 3D printed model of the glioblastoma tumour was developed and imaged to evaluate the accuracy of the proposed protocol.
Results: Using the imaging calibration factor and recovery coefficients obtained with the Jaszczak phantom, we were able to quantify the activity in a 3D-printed model of a glioblastoma tumour with uncertainty of no more than 10% and satisfying accuracy.
Conclusions: It is feasible to perform quantitative Ac SPECT/CT imaging. However, there are still many more challenges that should be considered for further research on this topic (among others: accurate determination of ICF in the case of high background noise, better method of background estimation for recovery coefficient calculations, other methods for scatter correction than the dual-energy window scatter-compensation method used in this study).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082108 | PMC |
http://dx.doi.org/10.1186/s40658-024-00635-1 | DOI Listing |
Diagnostics (Basel)
December 2024
Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University, 81377 Munich, Germany.
: Iodo-metaiodobenzylguanidine single photon emission computed tomography/computed tomography (I-MIBG SPECT/CT) is used to evaluate the cardiac sympathetic nervous system in cardiac diseases such as arrhythmogenic right ventricular cardiomyopathy (ARVC) and α-synucleinopathies such as Parkinson's diseases. A common feature of these diseases is denervation. We aimed to compare quantitative and semi-quantitative cardiac sympathetic innervation using I-MIBG imaging of ARVC and α-synucleinopathies.
View Article and Find Full Text PDFActa Cardiol Sin
January 2025
Division of Cardiology, Cardiovascular Medical Center, and Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City.
This 2025 updated consensus outlines the diagnostic strategy for transthyretin amyloid cardiomyopathy (ATTR-CM). Given that ATTR-CM is a significant contributor to heart failure, this article emphasizes the importance of making an early and precise diagnosis, particularly as new therapeutic options become available. Highlighting the critical importance of an early and accurate diagnosis, particularly in light of emerging therapeutic modalities, this consensus underscores the central role of Tc-pyrophosphate (PYP) scintigraphy as a non-invasive diagnostic tool.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California;
Nuclear cardiology offers a diverse range of imaging tools that provide valuable insights into myocardial perfusion, inflammation, metabolism, neuroregulation, thrombosis, and microcalcification. These techniques are crucial not only for diagnosing and managing cardiovascular conditions but also for gaining pathophysiologic insights. Surrogate biomarkers in nuclear cardiology, represented by detectable imaging changes, correlate with disease processes or therapeutic responses and can serve as endpoints in clinical trials when they demonstrate a clear link with these processes.
View Article and Find Full Text PDFAsia Ocean J Nucl Med Biol
January 2025
Department of Nuclear Medicine, Saitama Medical University Hospital, Saitama, Japan.
Mol Ther
December 2024
Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, California 90095; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095. Electronic address:
Gene therapy achieves therapeutic benefits by delivering genetic materials, packaged within a delivery vehicle, to target cells with defective genes. This approach has shown promise in treating various conditions, including cancer, metabolic disorders, and tissue degenerative diseases. Over the past five years, molecular imaging has increasingly supported gene therapy development in both preclinical and clinical studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!