Ulvan is a complex sulfated polysaccharide extracted from , and ulvan lyases can degrade ulvan through a β-elimination mechanism to obtain oligosaccharides. In this study, a new ulvan lyase, EPL15085, which belongs to the polysaccharide lyase (PL) 28 family from CW2-9, was characterized in detail. The optimal pH and salinity are 9.0 and 0.4 M NaCl, respectively. The and of recombinant EPL15085 toward ulvan are 0.80 mg·mL and 11.22 μmol·min mg·mL, respectively. Unexpectedly, it is very resistant to high temperatures. After treatment at 100 °C, EPL15085 maintained its ability to degrade ulvan. Molecular dynamics simulation analysis and site-directed mutagenesis analysis indicated that the strong rigidity of the disulfide bond between Cys74-Cys102 in the N-terminus is related to its thermostability. In addition, oligosaccharides with disaccharides and tetrasaccharides were the end products of EPL15085. Based on molecular docking and site-directed mutagenesis analysis, Tyr177 and Leu134 are considered to be the crucial residues for enzyme activity. In conclusion, our study identified a new PL28 family of ulvan lyases, EPL15085, with excellent heat resistance that can expand the database of ulvan lyases and provide the possibility to make full use of ulvan.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c01717DOI Listing

Publication Analysis

Top Keywords

ulvan lyases
12
ulvan
10
ulvan lyase
8
degrade ulvan
8
site-directed mutagenesis
8
mutagenesis analysis
8
epl15085
5
biochemical characterization
4
characterization novel
4
novel thermostable
4

Similar Publications

Green algae, particularly species, are rich in complex polysaccharides, such as ulvan, which have significant potential for biotechnological applications. However, the biochemical properties of ulvan depolymerised products remain underexplored. The enzymatic depolymerisation of ulvan has garnered attention owing to its cost advantages over alternative methods.

View Article and Find Full Text PDF

Seaweeds (macroalgae) are an attractive resource for diverse microbial- and enzymatic production processes. They are abundant, underutilized, cheap, and rich in carbohydrates, and therefore have the potential to be used as a source of mono- or oligosaccharides, and as substrates for industrial fermentation processes. Many seaweed polysaccharides, including the sulfated polysaccharides ulvan and fucoidan, are however complex and heterogenous in structure, and there are currently few enzymes available to modify them, and understanding of their enzymatic depolymerization remains limited.

View Article and Find Full Text PDF

Ulvan is a water-soluble sulfated polysaccharide extracted from the green algae cell wall. Compared with polysaccharides, oligosaccharides have drawn increasing attention in various industries due to their enhanced biocompatibility and solubility. Ulvan lyase degrades polysaccharides into low molecular weight oligosaccharides through the -elimination mechanism.

View Article and Find Full Text PDF

Directed preparation of algal oligosaccharides with specific structures by algal polysaccharide degrading enzymes.

Int J Biol Macromol

October 2024

College of Food Science and Light Industry, Nanjing Tech University, 211086, China. Electronic address:

Seaweed polysaccharides have a wide range of sources and rich content, with various biological activities such as anti-inflammatory, anti-tumor, anticoagulant, and blood pressure lowering. They can be applied in fields such as food, agriculture, and medicine. However, the poor solubility of macromolecular seaweed polysaccharides limits their further application.

View Article and Find Full Text PDF

Ulva lactuca, a green seaweed, may be an alternative source of nutrients and bioactive compounds for weaned piglets. However, it has a recalcitrant cell wall rich in a sulphated polysaccharide - ulvan - that is indigestible to monogastrics. The objective of this study was to evaluate the effect of dietary incorporation of 7% U.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!