Nonradiative recombination losses occurring at the interface pose a significant obstacle to achieve high-efficiency perovskite solar cells (PSCs), particularly in inverted PSCs. Passivating surface defects using molecules with different functional groups represents one of the key strategies for enhancing PSCs efficiency. However, a lack of insight into the passivation orientation of molecules on the surface is a challenge for rational molecular design. In this study, aminothiol hydrochlorides with different alkyl chains but identical electron-donating (-SH) and electron-withdrawing (-NH ) groups were employed to investigate the interplay between molecular structure, orientation, and interaction on perovskite surface. The 2-Aminoethane-1-thiol hydrochloride with shorter alkyl chains exhibited a preference of parallel orientations, which facilitating stronger interactions with the surface defects through strong coordination and hydrogen bonding. The resultant perovskite films following defect passivation demonstrate reduced ion migration, inhibition of nonradiative recombination, and more n-type characteristics for efficient electron transfer. Consequently, an impressive power conversion efficiency of 25 % was achieved, maintaining 95 % of its initial efficiency after 500 hours of continuous maximum power point tracking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202403610 | DOI Listing |
Chemistry
December 2024
Université de Liège: Universite de Liege, Laboratory of Organometallic Chemistry and Homogeneous Catalysis, Institut de chimie B6a, Sart-Tilman, 4000, Liege, BELGIUM.
Thirteen imidazolium iodides bearing benzyl, mesityl, or 2,6-diiso-propyl-phenyl substituents on their nitrogen atoms, and C1 to C4 alkyl chains on their C2 carbon atom were readily deuterated with D2O as a cheap and non-toxic deuterium source in the presence of Cs2CO3, a weak, innocuous, inorganic base. The isotopic exchange proceeded quickly and efficiently under mild, aerobic conditions to afford a range of aNHC and NHO precursors regioselectively labeled on their C2α exocyclic position and/or C4=C5 heterocyclic backbone. A "carbene-free" mechanism was postulated, in which the carbonate anion acts as a catalyst to activate an exocyclic, acidic C-H bond and ease a deuterium transfer from D2O to the imidazolium salt in a concerted fashion.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China. Electronic address:
The reversibility and stability of aqueous zinc-ion batteries (AZIBs) are largely limited by free-water-induced side reactions (e.g., hydrogen evolution and zinc corrosion) and negative zinc dendrite growth.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 300093, Taiwan.
Three new bithiophene imide (BTI)-based organic small molecules, (), (), and (), with varied alkyl side chains, were developed and employed as self-assembled monolayers (SAMs) applied to NiOx films in tin perovskite solar cells (TPSCs). The NiOx layer has the effect of modifying the hydrophilicity and the surface roughness of ITO for SAM to uniformly deposit on it. The side chains of the SAM molecules play a vital role in the formation of a high-quality perovskite layer in TPSCs.
View Article and Find Full Text PDFAnal Chem
December 2024
Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
The surge of lateral flow immunoassays (LFAs) stimulates researchers to explore the novel vibrant aggregation-induced emission luminogen (AIEgen)-doped nanoparticles to improve the accuracy and reliability of LFAs. However, the loading amount of AIEgens currently used for the LFA in microspheres is limited due to their symmetrical large conjugated skeleton structure, which significantly reduces the fluorescence brightness of the signal reporter in the LFA. Herein, an ionic AIEgens with a donor-acceptor type was developed as the signal reporter of the LFA for C-reactive protein (CRP).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Ghent University: Universiteit Gent, Department of Organic and Macromolecular Chemistry, Krijgslaan 281 S4, 9000, Ghent, BELGIUM.
Recycling thermosetting materials presents itself as a major challenge in achieving sustainable material use. Dynamic covalent cross-linking of polymers has emerged as a viable solution that can combine the structural integrity of thermosetting materials with the (re-)processability of thermoplastics. Thioether linkages between polymer chains are quite common, and their use dates back to the vulcanization of rubbers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!