Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Observational studies have a critical role in disability research, providing the opportunity to address a range of research questions. Over the past decades, there have been substantial shifts and developments in statistical methods for observational studies, most notably for causal inference. In this review, we provide an overview of modern design and analysis concepts critical for observational studies, drawing examples from the field of disability research and highlighting the challenges in this field, to inform the readership on important statistical considerations for their studies. WHAT THIS PAPER ADDS: Descriptive research questions have specific analytical complexities, so careful statistical design before analysis is critical. Prediction research aims to produce a model with good predictive ability and requires thorough statistical design prior to analysis. Causal research requires careful statistical analysis planning, facilitated by modern causal inference concepts and analytical methods. Adopting these approaches will strengthen the quality of observational studies addressing a range of research questions in the disability space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/dmcn.15948 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!