A review of Ribosome profiling and tools used in Ribo-seq data analysis.

Comput Struct Biotechnol J

School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.

Published: December 2024

Translational regulation plays the most critical role in gene expression. Ribosome profiling sequencing (Ribo-Seq) is one of the methods to study translation and its regulation. It is a high throughput technology based on deep sequencing, which targets ribosome protected mRNA fragments to produce a 'global snapshot' of translatome. There has been an annual increase in the number of publications incorporating Ribo-seq technology. Because of its importance, we used PubMed database to conduct a comprehensive bibliometric analysis on Ribo-seq. We identified 2744 published articles that utilized the term 'Ribo-seq' between 2009 and Jan 2024, and 684 articles that contained both Ribo-seq and RNA-seq terms. Based on keywords correlation analysis, we discovered that the primary focus of Ribo-seq articles lies in the areas of translation, transcriptome, and ribosome in the past few years and other topics such as single-cell ribo-seq and crispr within two years, reflecting current areas of interests in Ribo-seq research. The Ribo-seq data analysis applications were also explored and summarized, providing a guide for researchers to choose corresponding tools for different types of analysis. Overall, we highlighted the advances made by Ribo-seq technologies, and the possibilities of utilizing machine learning models to unravel information from multi-omics data. The integration of Ribo-seq with other omics data, such as RNA-seq, is essential to understand the gene expression in complex biological systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076270PMC
http://dx.doi.org/10.1016/j.csbj.2024.04.051DOI Listing

Publication Analysis

Top Keywords

ribo-seq
11
ribosome profiling
8
ribo-seq data
8
data analysis
8
gene expression
8
analysis
5
review ribosome
4
profiling tools
4
tools ribo-seq
4
data
4

Similar Publications

Decoding Codon Bias: The Role of tRNA Modifications in Tissue-Specific Translation.

Int J Mol Sci

January 2025

Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.

The tRNA epitranscriptome has been recognized as an important player in mRNA translation regulation. Our knowledge of the role of the tRNA epitranscriptome in fine-tuning translation via codon decoding at tissue or cell levels remains incomplete. We analyzed tRNA expression and modifications as well as codon optimality across seven mouse tissues.

View Article and Find Full Text PDF

Background: The morbidity and mortality of sepsis remain high, and so far specific diagnostic and therapeutic means are lacking.

Objective: To screen novel biomarkers for sepsis.

Methods: Raw sepsis data were downloaded from the Chinese National Genebank (CNGBdb) and screened for differentially expressed RNAs.

View Article and Find Full Text PDF

Ribosome profiling and single-cell RNA sequencing identify the unfolded protein response as a key regulator of pigeon lactation.

Zool Res

January 2025

National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.

Pigeons and certain other avian species produce a milk-like secretion in their crop sacs to nourish offspring, yet the detailed processes involved are not fully elucidated. This study investigated the crop sacs of 225-day-old unpaired non-lactating male pigeons (MN) and males initiating lactation on the first day after incubation (ML). Using RNA sequencing, ribosome profiling, and single-cell transcriptome sequencing (scRNA-seq), we identified a significant up-regulation of genes associated with ribosome assembly and protein synthesis in ML compared to MN.

View Article and Find Full Text PDF

Glioma-induced alterations in excitatory neurons are reversed by mTOR inhibition.

Neuron

January 2025

Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

Gliomas are aggressive neoplasms that diffusely infiltrate the brain and cause neurological symptoms, including cognitive deficits and seizures. Increased mTOR signaling has been implicated in glioma-induced neuronal hyperexcitability, but the molecular and functional consequences have not been identified. Here, we show three types of changes in tumor-associated neurons: (1) downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development and upregulation of cytoskeletal transcripts via neuron-specific profiling of ribosome-bound mRNA, (2) marked decreases in dendritic spine density via light and electron microscopy, and (3) progressive functional alterations leading to neuronal hyperexcitability via in vivo calcium imaging.

View Article and Find Full Text PDF

Background: Our previous studies have established that the broad-spectrum anti-epileptic drug lamotrigine (LTG) confers protection against cognitive impairments, synapse and nerve cell damage, as well as characteristic neuropathologies in APP/PS1 mice, a mouse model of Alzheimer's disease (AD). However, the precise molecular mechanisms responsible for this protective effect induced by LTG remain largely elusive.

Objective: In this study, we aimed to investigate the mechanisms underlying the beneficial effects of LTG against AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!