Formulation of a Novel Polymeric Hydrogel Membrane for Periodontal Tissue Regeneration Using Tricalcium Phosphate-Alginate Reinforcement.

Cureus

Department of Periodontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND.

Published: April 2024

Background: The primary goal of periodontal therapy is to facilitate the regeneration of tissues damaged by periodontal disease. In recent years, there has been a growing utilization of guided tissue regeneration (GTR) membranes with bioabsorbable properties as these membranes are increasingly employed to guide the growth of gingival tissue away from the root surface. Both resorbable and non-resorbable membranes currently employed act as physical barriers, preventing the ingrowth of connective and epithelial tissues into the defect and thereby facilitating periodontal tissue regeneration.

Objective: This study aimed to develop a polymeric hydrogel membrane reinforced with tricalcium phosphate (TCP)-alginate and assess its potential for periodontal regeneration.

Materials And Methods: TCP nanoparticles were incorporated into the alginate mixture to form TCP alginate. Subsequently, the mixture was cross-linked with calcium chloride to produce a TCP-alginate polymeric hydrogel membrane. The membrane underwent hemocompatibility analysis, and also scanning electron microscopy and Fourier-transform infrared (FTIR) spectroscopy analyses were done.

Results: The SEM analysis revealed granulations and a bonded thread-like structure in the membrane, indicative of favorable conditions for cell attachment necessary for periodontal regeneration. FTIR analysis showed characteristic peaks in the spectrum, including those attributed to phosphate ion (PO4-3) at 1000.85 cm-1 and 600 cm-1, indicating the presence of β-TCP phases. Hemocompatibility assessment demonstrated a hemolysis rate of less than 5% for the TCP-alginate membrane, which is found to be within the limits.

Conclusion: The developed TCP-reinforced alginate membrane exhibited hemocompatibility and safety, suggesting its suitability for utilization in periodontal therapy as an effective regenerative material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078324PMC
http://dx.doi.org/10.7759/cureus.57844DOI Listing

Publication Analysis

Top Keywords

polymeric hydrogel
12
hydrogel membrane
12
periodontal tissue
8
tissue regeneration
8
periodontal therapy
8
membrane
7
periodontal
7
formulation novel
4
novel polymeric
4
membrane periodontal
4

Similar Publications

The reduction in hyaluronic acid concentration and viscosity in the synovial fluid of patients struggling with osteoarthritis increases the abrasion of articular cartilage. The aim of this study was to design a semi-IPN hydrogel based on genipin-crosslinked carboxymethyl chitosan (CMCh) and glycerol to achieve long-term release of hyaluronic acid. The results showed that hydrogel comprising CMCh (3 % wt.

View Article and Find Full Text PDF

Hydroxybutyl chitosan (HBC), a derivative of chitosan, exhibits biocompatibility and temperature-sensitive properties, rendering it utilized in tissue engineering, and biomedical science. Currently, HBC is mainly prepared based on heterogeneous and homogeneous reactions. However, the impact of reactions on structure of derivatives and their mechanisms for self-assembly remains to be elucidated.

View Article and Find Full Text PDF

Functional chitosan/HP-β-CD hydrogel for targeted co-delivery of Rhubarb-derived nanovesicles and kaempferol for alleviating ulcerative colitis.

Carbohydr Polym

March 2025

School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. Electronic address:

Ulcerative colitis (UC) remains a major challenge in clinical treatment due to its multivariate pathology. Developing an oral formulation that encapsulates and delivers multiple active ingredients to target colon tissues by suppressing intestinal inflammation and restoring the intestinal barrier is crucial for effectively treating UC. Here, we developed rhubarb-derived nanovesicles (RNs) and a supramolecular hydrogel platform formed by furfural-functionalized chitosan-mannose polymer and synthesized 3-maleimide HP-β-CD, with kaempferol (Kae) integrated into the hydrophobic cavity.

View Article and Find Full Text PDF

3D-printed ultra-sensitive strain sensors using biogels prepared from fish gelatin and gellan gum.

Carbohydr Polym

March 2025

Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China. Electronic address:

The long-term sustainable development of flexible electronic devices is limited by a reliance on synthetic polymers that pose dangers for humans and potentially severe ecological problems, as well as a reliance on conventional processing methods. This work aims to exploit 3D printing to develop natural biogels composed of fish gelatin and high acyl gellan gum for use as flexible sensors. The electrical conductivity and mechanical strength were remarkably enhanced through the environmentally friendly enzyme (transglutaminase) cross-linking and non-toxic ethanol modification treatment, which allows the development of 3D printed sensors for temperature, strain, and stress sensors.

View Article and Find Full Text PDF

Thermoresponsive dual-network chitosan-based hydrogels with demineralized bone matrix for controlled release of rhBMP9 in the treatment of femoral head osteonecrosis.

Carbohydr Polym

March 2025

Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China. Electronic address:

In an effort to mitigate or reverse the pathological progression of early-stage osteonecrosis of the femoral head (ONFH), this study employed a promising strategy that involves the sustained delivery of osteogenic factors to augment core decompression, facilitated by the use of composite hydrogels. Specifically, a hydrogel was synthesized by blending chitosan, Pluronic F-127, and tripolyphosphate, utilizing both ionic bonding and copolymer micelle cross-linking techniques. This hydrogel demonstrated exceptional biocompatibility, temperature responsiveness, pH-dependent biodegradation, and controlled release properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!