Methane Hydrate Structure I Dissociation Process and Free Surface Analysis.

Energy Fuels

Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92697-3975, United States.

Published: May 2024

Methane hydrates are crystalline solids of water that contain methane molecules trapped inside their molecular cavities. Gas hydrates with methane as a guest molecule form structure I hydrates with two small dodecahedral cages and six tetra decahedral large cages. This study assesses the influence of occupation and the behavior of methane release from the molecular perspective during the dissociation process, particularly for the purpose of testing a series of molecular dynamics simulations. The dissociation cases conducted include an ideal 4 × 4 × 4 and 2 × 2 × 2 supercell methane hydrate system while inducing dissociation with two different types of temperature-rising functions for understanding the limitation and capability. These temperature-rising functions are temperature ramping and a single temperature step simulating in 5-7 various conditions. Temperature step results showed the earliest dissociation starting 50 ps into the simulation at an Δ of 100 K, while at an Δ of 80 K, dissociation was not observed. There was not a distinct dissociation preference observed between large and small cages, so it appears that the dissociation affects the entire structure uniformly when temperature increases are applied throughout the system rather than transport from a boundary. Temperature ramping simulations showed that the dissociation temperature increased with a higher heating rate. The mean-squared displacement results for the oxygen atoms in the water molecules at a high heating rate of 400 TK/s showed behavior similar to that for methane gas. As in the temperature step simulation, there were no clear differences in dissociation between large and small cages, which suggested homogeneous dissociation in all cases. Finally, a coordination analysis was performed on a 3 × 4 × 4 structure I methane hydrate with two free surfaces to demonstrate clear free surface boundaries and its location.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11075011PMC
http://dx.doi.org/10.1021/acs.energyfuels.4c00267DOI Listing

Publication Analysis

Top Keywords

methane hydrate
12
temperature step
12
dissociation
11
methane
8
dissociation process
8
free surface
8
behavior methane
8
simulations dissociation
8
dissociation cases
8
temperature-rising functions
8

Similar Publications

In this study, we use petroleum systems modeling (PSM) to quantitatively simulate the uncertainty of biogenic gas generation modes and their impact on the spatial distribution and resource assessment of gas hydrates in the Baiyun Sag, South China Sea. The results are as follows: (1) Biogenic gas generation is significantly affected by thermal state and organic matter type. Low temperature is a primary reason for gas hydrate occurrence in shallower sediments when sufficient methane gas is present.

View Article and Find Full Text PDF

Hydrate-Based Methane Storage in Biodegradable Hydrogels Absorbing Dilute Sodium P-Styrenesulfonate Solution.

Gels

December 2024

Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China.

Developing an exceptional reaction medium with high promotion efficiency, desirable biodegradability and good recyclability is necessary for hydrate-based methane storage. In this work, a kind of eco-friendly hydrogel, polyvinyl alcohol-co-acrylic acid (PVA-co-PAA), was utilized to absorb dilute sodium p-styrenesulfonate (SS) solution, for constructing a hybrid reaction medium for methane hydrate formation. Hydrogels or dilute SS solutions (1-4 mmol L) had weak or even no promoting effects on hydrate formation kinetics, while the combination of them could synergistically promote methane hydrate formation.

View Article and Find Full Text PDF

The formation of natural gas hydrates presents significant economic and safety challenges to the petroleum and gas industry, necessitating the development of effective prevention strategies. This study investigates an environmentally sustainable Tenebrio molitor antifreeze protein (TmAFP) modified to be a potential kinetic hydrate inhibitor. The aim of this study was to enhance the inhibitory activity of TmAFP by systematically substituting threonine (Thr) residues with glycine (Gly), alanine (Ala), or serine (Ser) at positions 29, 39, and 53.

View Article and Find Full Text PDF

The Use of Microwave Treatment as a Sustainable Technology for the Drying of Metallurgical Sludge.

Materials (Basel)

December 2024

Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland.

The modern metallurgical industry produces approximately 90% of the volume of all produced steel; for this, integrated technology based on fossil materials such as coal, fluxes, and especially iron ore is used. This industry generates large amounts of waste and by-products at almost all stages of production. Alternative iron and steel production technologies based on iron ore, methane, or pure hydrogen are also not waste-free.

View Article and Find Full Text PDF

Hydrate formation in porous media with upward-migrating methane and its implications for the evolution of deep-sea cold seep ecosystems.

Sci Total Environ

January 2025

Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

Methane leaking from the deep seabed is a primary source of carbon and energy for various microorganisms, sustaining the evolution and productivity of cold seep ecosystems. However, the dynamics of methane hydrate formation under methane seepage conditions and potential impacts on the evolution of cold seep ecosystems remain unclear. This study investigated the dynamic formation characteristics of gas hydrates within cold seep sediments by simulating the methane leakage process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!