Background And Purpose: Lymphatic filariasis is a debilitating infectious disease prevalent in endemic areas, necessitating the development of an effective vaccine for eradication. Although recombinant vaccine candidates have been deemed safe, they often fail to provide sufficient protection, which can be overcome by encapsulating them in nano-liposomes. In this study, we have optimised the liposomal composition for enhanced stability and encapsulation of filarial antigen thioredoxin (Bm-TRX).
Experimental Approach: Nano-liposomes were prepared using egg phosphatidylcholine (EPC) and cholesterol via thin-film hydration, followed by sonication and characterizing. Encapsulation efficiency was optimised using different weight ratios of EPC to cholesterol (8:2, 7:3, and 6:4) and total lipid (EPC+Cholesterol) concentration to antigen Bm-TRX (10:1, 10:2, and 10:3) followed by release kinetics study.
Key Results: Optimised parameters yielded spherical liposomes measuring 209 nm in diameter with narrow polydispersity. Our findings demonstrated the highest encapsulation efficiency of 70.685 % and stability of 10 hours for an EPC to cholesterol weight ratio of 7:3. The study proved the antigenic nature of TRX.
Conclusion: The liposomal formulations loaded with TRX, as optimized in this study, hold promise for improving antigen efficiency by enhancing stability, bioavailability, and prophylactic effects by acting as immune potentiators.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11075166 | PMC |
http://dx.doi.org/10.5599/admet.2089 | DOI Listing |
The study proposed improving the arsenic encapsulation efficiency (EE) in liposomes and make it pH responsive. Liposomes were prepared using the ethanol injection method (EIM), thin film dispersion method (TFM) and CAGM with sodium arsenite (NaAsO). The orthogonal experimental was used to optimize the preparation conditions of the CAGM.
View Article and Find Full Text PDFADMET DMPK
November 2023
Centre for Biotechnology, Anna University, Guindy, Chennai 600025, Tamilnadu, India.
Background And Purpose: Lymphatic filariasis is a debilitating infectious disease prevalent in endemic areas, necessitating the development of an effective vaccine for eradication. Although recombinant vaccine candidates have been deemed safe, they often fail to provide sufficient protection, which can be overcome by encapsulating them in nano-liposomes. In this study, we have optimised the liposomal composition for enhanced stability and encapsulation of filarial antigen thioredoxin (Bm-TRX).
View Article and Find Full Text PDFEur J Pharm Sci
April 2024
Department of Infectious Diseases, Leiden University Medical Center (LUMC), Postzone C5-P, PO Box 9600, Leiden, RC 2300, the Netherlands.
Tuberculosis (TB) is still among the deadliest infectious diseases, hence there is a pressing need for more effective TB vaccines. Cationic liposome subunit vaccines are excellent vaccine candidates offering effective protection with a better safety profile than live vaccines. In this study, we aim to explore intrinsic adjuvant properties of cationic liposomes to maximize immune activation while minimizing aspecific cytotoxicity.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
Liposomes, nanoscale spherical structures composed of amphiphilic lipids, hold great promise for various pharmaceutical applications, especially as nanocarriers in targeted drug delivery, due to their biocompatibility, biodegradability, and low immunogenicity. Understanding the factors influencing their physicochemical properties is crucial for designing and optimizing liposomes. In this study, we have presented the kernel-weighted local polynomial regression (KwLPR) nano-quantitative structure-property relationships (nano-QSPR) model to predict the zeta potential (ZP) based on the structure of 12 liposome formulations, including 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and L-α-phosphatidylcholine (EPC).
View Article and Find Full Text PDFInt J Mol Sci
December 2023
Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland.
Atherosclerosis is a chronic inflammatory disease driven by lipid accumulation in the arteries, leading to narrowing and thrombosis that causes mortality. Emerging evidence has confirmed that atherosclerosis affects younger people and is involved in the majority of deaths worldwide. EVs are associated with critical steps in atherosclerosis, cholesterol metabolism, immune response, endothelial dysfunction, vascular inflammation, and remodeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!