A multi-channel electrochemical biosensor based on polyadenine tetrahedra for the detection of multiple drug resistance genes.

Analyst

International Research Center for Food and Health; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.

Published: June 2024

AI Article Synopsis

  • Antimicrobial resistance presents a major health risk due to the serious infections caused by drug-resistant microbes, highlighting the need for effective identification methods.
  • This study introduces a sandwich-type electrochemical DNA biosensor using polyadenine-DNA tetrahedron probes, optimizing conditions for improved detection capabilities.
  • The biosensor demonstrated strong performance with a detection limit of 1 fM and successfully identified multiple drug resistance genes, showcasing its practical application for rapid detection of antibiotic-resistant strains.

Article Abstract

Antimicrobial resistance poses a serious threat to human health due to the high morbidity and mortality caused by drug-resistant microbial infections. Therefore, the development of rapid, sensitive and selective identification methods is key to improving the survival rate of patients. In this paper, a sandwich-type electrochemical DNA biosensor based on a polyadenine-DNA tetrahedron probe was constructed. The key experimental conditions were optimized, including the length of polyadenine, the concentration of the polyadenine DNA tetrahedron, the concentration of the signal probe and the hybridization time. At the same time, poly-avidin-HRP80 was used to enhance the electrochemical detection signal. Finally, excellent biosensor performance was achieved, and the detection limit for the synthetic DNA target was as low as 1 fM. In addition, we verified the practicability of the system by analyzing with the MCR-1 plasmid and realized multi-channel detection of the drug resistance genes MCR-1, blaNDM, blaKPC and blaOXA. With the ideal electrochemical interface, the polyA-based biosensor exhibits excellent stability, which provides powerful technical support for the rapid detection of antibiotic-resistant strains in the field.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4an00488dDOI Listing

Publication Analysis

Top Keywords

biosensor based
8
drug resistance
8
resistance genes
8
detection
5
multi-channel electrochemical
4
biosensor
4
electrochemical biosensor
4
based polyadenine
4
polyadenine tetrahedra
4
tetrahedra detection
4

Similar Publications

Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the finger-pricking glucometers in the market, a new sensor must first show that 95% of their glucose measurements have errors below 15% of these glucometers. Although recent innovative exploitations of the well-established Fourier-transform infrared (FTIR) spectroscopy have reached such FDA accuracy benchmarks, an FTIR spectrometer is too bulky. The advancements of quantum cascade lasers (QCLs) can lead to FTIR spectrometers of reduced size, but compact QCL-based noninvasive blood glucose sensors are not yet available.

View Article and Find Full Text PDF

A Label-Free Colorimetric Aptasensor for Flavokavain B Detection.

Sensors (Basel)

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.

Flavokavain B (FKB), a hepatotoxic chalcone from (kava), has raised safety concerns due to its role in disrupting redox homeostasis and inducing apoptosis in hepatocytes. Conventional chromatographic methods for FKB detection, while sensitive, are costly and impractical for field applications. In this work, DNA aptamers were selected using the library-immobilized method and high-throughput sequencing.

View Article and Find Full Text PDF

The increasing demand for personalized healthcare, particularly among individuals requiring continuous health monitoring, has driven significant advancements in sensor technology. Wearable, non-continuous monitoring, and non-contact sensors are leading this innovation, providing novel methods for monitoring vital signs and physiological data in both clinical and home settings. However, there is a lack of comprehensive comparative studies assessing the overall functionality of these technologies.

View Article and Find Full Text PDF

The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor.

View Article and Find Full Text PDF

Integrated Spectral Sensitivity as Physics-Based Figure of Merit for Spectral Transducers in Optical Sensing.

Sensors (Basel)

January 2025

Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

The design of optical sensors aims at providing, among other things, the highest precision in the determination of the target measurand. Many sensor systems rely on a spectral transducer to map changes in the measurand into spectral shifts of a resonance peak in the reflection or transmission spectrum, which is measured by a readout device (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!