In our institution, when we perform aortic arch surgery with isolated left vertebral artery using an extracorporeal circulation, we select an interposed saphenous vein graft technique. This technique has a relatively short clamping time and allows for selective cerebral perfusion and flexible choice of reconstruction site. Although other techniques, such as an island reconstruction, have been reported, we do not perform it often due to its longer ischemic time of the left vertebral artery. On the other hand, we use a direct reconstruction technique in cases where an extracorporeal circulation is not used. This direct reconstruction technique in cases of isolated left vertebral artery could reduce the time and number of clamping it.
Download full-text PDF |
Source |
---|
Surg Radiol Anat
December 2024
Department of Neurosurgery, Saitama Sekishinkai Hospital, 2-37-20 Irumagawa, Sayama, Saitama, 350-1305, Japan.
Purpose: To describe a case in which a right replaced posterior cerebral artery (PCA) was associated with an ipsilateral superior cerebellar artery (SCA) type persistent trigeminal artery (PTA) variant.
Methods: A 53-year-old man who had been diagnosed with chronic dissection of the left vertebral artery (VA) 4 months previously underwent follow-up magnetic resonance (MR) angiography using a 3-Tesla scanner.
Results: MR angiography showed a slightly dilated left VA at the terminal segment without interval change.
Cureus
November 2024
Internal Medicine, Waterbury Hospital, Waterbury, USA.
A 48-year-old female presented to the ED with worsening headache and neck pain for the past week. Her medical history is significant for recurrent left-sided triple-negative breast cancer (TNBC) with metastasis to the chest wall, liver, and lungs, initially diagnosed two years ago. She underwent a left-sided mastectomy and received radiation therapy and chemotherapy.
View Article and Find Full Text PDFBMC Musculoskelet Disord
December 2024
Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, People's Republic of China.
Background: Gorham-Stout disease (GSD) is a rare disease characterized by osteolysis and lymphatic malformations. GSD involving the spine is exceptionally rare and lacks a standard cure. The aim of this article was to report a case of GSD with scoliosis treated via corrective surgery and medication.
View Article and Find Full Text PDFBMC Musculoskelet Disord
December 2024
Department of Orthopaedics, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China.
Introduction: The modified pedicle screw fixation (PSF) was designed to simulate an integrated framework structure to ameliorate the resistance to vertical and shearing forces of the disrupted sacroiliac complex, and the aim of this study was to compare the biomechanical characteristics of PSF and traditional lumbopelvic fixation (LPF) for the treatment of sacroiliac joint disruption.
Methods: The digital computer simulation model of an intact spine-pelvis-femur complex with main ligaments was built from clinical images. A left sacroiliac joint disruption model was mimicked by removing the concerned ligaments.
BMC Anesthesiol
December 2024
Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China.
Objective: This study aimed to observe the impact of Tthoracic paravertebral nerve blockade(TPVB) at left T7 level on the α7nAChR-dependent cholinergic anti-inflammatory pathway in patients undergoing thoracoscopic lobectomy.
Methods: Scheduled thoracoscopic lung surgery patients at the First Affiliated Hospital of Nanchang University from August to September 2023 were divided into two groups according to the surgical site. The experimental group underwent left T7 paravertebral nerve blockade (LTPVB group), while the control group underwent right T7 paravertebral nerve blockade (RTPVB group).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!