Spoilage and deterioration of aquatic products during storage are inevitable, posing significant challenges to their suitability for consumption and the sustainability of the aquatic products supply chain. Research on the nonthermal processing of fruit juices, probiotics, dairy products, and meat has demonstrated positive outcomes in preserving quality. This review examines specific spoilage bacteria species and mechanisms for various aquatic products and discusses the principles, characteristics, and applications of six nonthermal processing methods for bacterial inhibition to maintain microbiological safety and physicochemical quality. The primary spoilage bacteria groups differ among fish, crustaceans, and shellfish based on storage conditions and durations. Four metabolic pathways utilized by spoilage microorganisms-peptides and amino acids, nitrogen compounds, nucleotides, and carbohydrates-are crucial in explaining spoilage. Nonthermal processing techniques, such as ultrahigh pressure, irradiation, magnetic/electric fields, plasma, and ultrasound, can inactivate microorganisms, thereby enhancing microbiological safety, physicochemical quality, and shelf life. Future research may integrate nonthermal processing with other technologies (e.g., modified atmosphere packaging and omics) to elucidate mechanisms of spoilage and improve the storage quality of aquatic products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1541-4337.13368 | DOI Listing |
Nat Commun
December 2024
Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
December 2024
Department of Forensic Medicine & Toxicology, College of Veterinary Medicine, University of Sadat City, Sadat city, Egypt.
This study evaluated the efficacy of integrating artichoke (Cynara scolymus) leaf extract (CSLE) into the Nile tilapia (Oreochromis niloticus) diet to mitigate fluoride (FLR) adverse effects on growth, immune components, renal and hepatic function, and the regulation of oxidative stress, inflammation, and apoptosis-related genes. A 60-day feeding experiment was conducted with 240 O. niloticus fish separated into four groups as follows: a control group (CON) fed on a basic diet, a CSLE group receiving 300 mg CSLE/kg via the diet, a FLR group exposed to 6.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, P.O. Box 48175-861, Sari 4847193698, Iran; Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:
The environmental persistence of pharmaceuticals represents a significant threat to aquatic ecosystems and human health, while limitations in conventional wastewater treatment methods underscore the urgent need for innovative and eco-friendly degradation strategies. Photobiocatalytic approaches provide a promising solution for the effective degradation of pharmaceutical contaminants by harnessing the synergistic effects of both photocatalysts and biocatalysts. In this study, we developed a photobiocatalytic composite by co-immobilizing laccase enzyme and zinc oxide nanoparticles on bacterial cellulose synthesized from orange peel waste.
View Article and Find Full Text PDFFood Chem
December 2024
School of Food Science and Technology, Dalian Polytechnic University; National Engineering Research Center of Seafood, Dalian 116034, PR China.
This study presents a targeted dual-acid preservation strategy for ready-to-eat crayfish (Procambarus clarkii), integrating a blend of phytic and lactic acids to fortify key sensory attributes throughout the storage phase. The primary objective was to maintain the sensory attributes of the crayfish during a 30-day storage period under 40 °C. Our approach significantly bolstered color retention by suppressing Maillard reactions and lipid oxidation, thereby maintaining the product's visual allure.
View Article and Find Full Text PDFTurk J Med Sci
December 2024
Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Bogor, Indonesia.
Background/aim: Tuberculosis (TB) has become the world's deadliest disease. The lack of an effective therapeutic drug to treat it is one of the obstacle for doctors. Today, multidrug-resistant TB cases are increasing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!