EGF-like growth factors upregulate pentraxin 3 expression in human granulosa-lutein cells.

J Ovarian Res

Department of Obstetrics and Gynecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.

Published: May 2024

AI Article Synopsis

  • EGF-like factors, specifically amphiregulin (AREG), betacellulin (BTC), and epiregulin (EREG), are essential in regulating the ovulation process and influencing the production of the protein PTX3 in human granulosa-lutein (hGL) cells.
  • * The study found that these EGF-like factors enhance the expression and production of PTX3, crucial for maintaining the extracellular matrix during cumulus expansion, through the activation of the ERK1/2 signaling pathway.
  • * The upregulation of PTX3 by AREG, BTC, and EREG is dependent on the epidermal growth factor receptor (EGFR), as inhibiting or knocking down EGFR reversed the

Article Abstract

The epidermal growth factor (EGF)-like factors, comprising amphiregulin (AREG), betacellulin (BTC), and epiregulin (EREG), play a critical role in regulating the ovulatory process. Pentraxin 3 (PTX3), an essential ovulatory protein, is necessary for maintaining extracellular matrix (ECM) stability during cumulus expansion. The aim of this study was to investigate the impact of EGF-like factors, AREG, BTC, and EREG on the expression and production of PTX3 in human granulosa-lutein (hGL) cells and the molecular mechanisms involved. Our results demonstrated that AREG, BTC, and EREG could regulate follicular function by upregulating the expression and increasing the production of PTX3 in both primary (obtained from 20 consenting patients undergoing IVF treatment) and immortalized hGL cells. The upregulation of PTX3 expression was primarily facilitated by the activation of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway, induced by these EGF-like factors. In addition, we found that the upregulation of PTX3 expression triggered by the EGF-like factors was completely reversed by either pretreatment with the epidermal growth factor receptor (EGFR) inhibitor, AG1478, or knockdown of EGFR, suggesting that EGFR is crucial for activating the ERK1/2 signaling pathway in hGL cells. Overall, our findings indicate that AREG, BTC, and EREG may modulate human cumulus expansion during the periovulatory stage through the upregulation of PTX3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077866PMC
http://dx.doi.org/10.1186/s13048-024-01404-5DOI Listing

Publication Analysis

Top Keywords

egf-like factors
16
areg btc
12
btc ereg
12
hgl cells
12
upregulation ptx3
12
human granulosa-lutein
8
epidermal growth
8
growth factor
8
cumulus expansion
8
production ptx3
8

Similar Publications

Marine and terrestrial organisms often utilise EGF/EGF-like domains in wet adhesives, yet their roles in adhesion remain unclear. Here, we investigate the Barbatia virescense byssal system and uncover an oxidation-independent, reversible, and robust adhesion mechanism where EGF/EGF-like domain tandem repetitions in adhesive proteins bind robustly to GlcNAc-based biopolymer. EGF/EGF-like-domain-containing proteins demonstrate over three-fold superior underwater adhesion to chitosan compared to the well-known strongest wet-adhesive proteins, mefp-5, and suckerin, when adhering to mica in an surface forces apparatus-based measurement.

View Article and Find Full Text PDF

Cryo-EM Structure of Human Hyaluronidase PH-20.

Proteins

December 2024

Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.

PH-20 is a specific type of hyaluronidase that plays a critical role in the fertilization process by facilitating the initial binding of sperm to the glycoprotein layer surrounding the oocyte and subsequently breaking down hyaluronic acid polymers in the cumulus cell layer. PH-20 contains an epidermal growth factor (EGF)-like domain, which may be involved in the recognition of the glycoprotein layer in addition to the catalytic domain. Herein, we report the structure of human PH-20 determined by cryogenic electron microscopy.

View Article and Find Full Text PDF

Aims/hypothesis: Pancreatic beta cell mass is dynamically regulated in response to increased physiological and pathological demands. Understanding the mechanisms that control physiological beta cell proliferation could provide valuable insights into novel therapeutic approaches to diabetes. Here, we aimed to analyse the intracellular and extracellular signalling pathways involved in regulating the physiological proliferation of beta cells using single-cell RNA-seq (scRNA-seq) and in vitro functional assays.

View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is characterized by ventricular dilation and poor systolic function. Approximately half of idiopathic DCM cases are assigned to genetic causes in familial or apparently sporadic cases, and more than 50 genes are reported to cause DCM. However, genetic basis of most DCM patients still keeps unknown and require further study.

View Article and Find Full Text PDF

Background: Diabetic Foot Ulcer (DFU) might be worsened by neuropathy and vascular issues. This condition can cause 14.3% fatality, stressing the need for effective wound healing therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!