The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, an important component of the innate immune system, is involved in the development of several diseases. Ectopic DNA-induced inflammatory responses are involved in several pathological processes. Repeated damage to tissues and metabolic organelles releases a large number of damage-associated molecular patterns (mitochondrial DNA, nuclear DNA, and exogenous DNA). The DNA fragments released into the cytoplasm are sensed by the sensor cGAS to initiate immune responses through the bridging protein STING. Many recent studies have revealed a regulatory role of the cGAS-STING signaling pathway in cardiovascular diseases (CVDs) such as myocardial infarction, heart failure, atherosclerosis, and aortic dissection/aneurysm. Furthermore, increasing evidence suggests that inhibiting the cGAS-STING signaling pathway can significantly inhibit myocardial hypertrophy and inflammatory cell infiltration. Therefore, this review is intended to identify risk factors for activating the cGAS-STING pathway to reduce risks and to simultaneously further elucidate the biological function of this pathway in the cardiovascular field, as well as its potential as a therapeutic target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11080250PMC
http://dx.doi.org/10.1186/s13578-024-01242-4DOI Listing

Publication Analysis

Top Keywords

pathway cardiovascular
12
cgas-sting signaling
12
signaling pathway
12
cgas-sting pathway
8
cardiovascular diseases
8
cgas-sting
5
pathway
5
diseases basic
4
basic clinical
4
clinical perspectives
4

Similar Publications

Background: Long-term renal allograft acceptance has been achieved in macaques using a transient mixed hematopoetic chimerism protocol, but similar regimens have proven unsuccessful in heart allograft recipients unless a kidney transplant was performed simultaneously. Here, we test whether a modified protocol based on targeting CD154, CD2, and CD28 is sufficient to prolong heart allograft acceptance or promote the expansion of regulatory T cells.

Methods: Eight macaques underwent heterotopic allo-heart transplantation from major histocompatibility complex-mismatched donors.

View Article and Find Full Text PDF

Objective: Gliomas are a general designation for neuroepithelial tumors derived from the glial cells of the central nervous system. According to the histopathological and immunohistochemical features, the World Health Organization classifies gliomas into four grades. Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor that has been approved for the treatment of glioblastoma multiforme (GBM) as a second-line therapy.

View Article and Find Full Text PDF

The histone lactylation of AIM2 influences the suppression of ferroptosis by ACSL4 through STAT5B and promotes the progression of lung cancer.

FASEB J

January 2025

Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Lung cancer progression is characterized by intricate epigenetic changes that impact critical metabolic processes and cell death pathways. In this study, we investigate the role of histone lactylation at the AIM2 locus and its downstream effects on ferroptosis regulation and lung cancer progression. We utilized a combination of biochemical assays, including chromatin immunoprecipitation (ChIP), quantitative real-time PCR (qRT-PCR), and western blotting to assess histone lactylation levels and gene expression.

View Article and Find Full Text PDF

IP6K1 rewires LKB1 signaling to mediate hyperglycemic endothelial senescence.

Diabetes

January 2025

Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.

Diabetes is a major risk factor for cardiovascular disease, but the molecular mechanisms underlying diabetic vasculopathy have been elusive. Here we report that inositol hexakisphosphate kinase 1 (IP6K1) mediates hyperglycemia-induced endothelial senescence by rewiring the liver kinase B1 (LKB1) signaling from activating the adenosine monophosphate-activated protein kinase (AMPK) pathway to the p53 pathway. We found that hyperglycemia upregulated IP6K1, which disrupts the Hsp/Hsc70 and carboxyl terminus of Hsc70-interacting protein (CHIP)-mediated LKB1 degradation, leading to increased expression levels of LKB1.

View Article and Find Full Text PDF

Background: The rising incidence of kidney stones underscores the imperative to devise effective preventive measures. While a robust association between cardiovascular disease (CVD) and kidney stones exists, the current research landscape lacks investigations between cardiovascular health (CVH) and kidney stones. This study aims to explore the association between CVH, assessed by Life's Essential 8 (LE8), and kidney stones, with the role of blood lipids and insulin resistance in this relationship.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!