Electro-optical photonic integrated circuits (PICs) based on lithium niobate (LiNbO) have demonstrated the vast capabilities of materials with a high Pockels coefficient. They enable linear and high-speed modulators operating at complementary metal-oxide-semiconductor voltage levels to be used in applications including data-centre communications, high-performance computing and photonic accelerators for AI. However, industrial use of this technology is hindered by the high cost per wafer and the limited wafer size. The high cost results from the lack of existing high-volume applications in other domains of the sort that accelerated the adoption of silicon-on-insulator (SOI) photonics, which was driven by vast investment in microelectronics. Here we report low-loss PICs made of lithium tantalate (LiTaO), a material that has already been adopted commercially for 5G radiofrequency filters and therefore enables scalable manufacturing at low cost, and it has equal, and in some cases superior, properties to LiNbO. We show that LiTaO can be etched to create low-loss (5.6 dB m) PICs using a deep ultraviolet (DUV) stepper-based manufacturing process. We demonstrate a LiTaO Mach-Zehnder modulator (MZM) with a half-wave voltage-length product of 1.9 V cm and an electro-optic bandwidth of up to 40 GHz. In comparison with LiNbO, LiTaO exhibits a much lower birefringence, enabling high-density circuits and broadband operation over all telecommunication bands. Moreover, the platform supports the generation of soliton microcombs. Our work paves the way for the scalable manufacture of low-cost and large-volume next-generation electro-optical PICs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111398 | PMC |
http://dx.doi.org/10.1038/s41586-024-07369-1 | DOI Listing |
Nature
January 2025
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
The integrated frequency comb generator based on Kerr parametric oscillation has led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, light detection and ranging, and astrophysical spectrometer calibration. Recent progress in lithium niobate (LiNbO) photonic integrated circuits (PICs) has resulted in chip-scale, electro-optic (EO) frequency combs, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of LiNbO.
View Article and Find Full Text PDFTerahertz (THz) parametric detection is a highly sensitive method that upconverts a THz wave into a near-infrared beam for detection. Lithium niobate has primarily been used as the nonlinear optical crystal in this approach. However, the frequency band with high parametric gain is limited, leading to increasing interest in other nonlinear optical crystals.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
Photonic manipulation of large-capacity data with the advantages of high speed and low power consumption is a promising solution for explosive growth demands in the era of post-Moore. A well-developed lithium-niobate-on-insulator (LNOI) platform has been widely explored for high-performance electro-optic (EO) modulators to bridge electrical and optical signals. However, the photonic waveguides on the x-cut LNOI platform suffer serious polarization-mode conversion/coupling issues because of strong birefringence, making it hard to realize large-scale integration.
View Article and Find Full Text PDFSci Rep
January 2025
Laser Research Center, Vilnius University, Saulėtekio Avenue 10, LT-10223, Vilnius, Lithuania.
We present a comparative experimental study of supercontinuum generation in undoped scintillator crystals: bismuth germanate (BGO), yttrium orthosilicate (YSO), lutetium oxyorthosilicate (LSO), lutetium yttrium oxyorthosilicate (LYSO) and gadolinium gallium garnet (GGG), pumped by 180 fs fundamental harmonic pulses of an amplified Yb:KGW laser. In addition to these materials, experiments in yttrium aluminium garnet (YAG), potassium gadolinium tungstate (KGW) and lithium tantalate (LT) were performed under identical experimental settings (focusing geometry and sample thickness), which served for straightforward comparison of supercontinuum generation performances. The threshold and optimal (that produces optimized red-shifted spectral extent) pump pulse energies for supercontinuum generation were evaluated from detailed measurements of spectral broadening dynamics.
View Article and Find Full Text PDFData Brief
October 2024
Department of Physics and Astronomy, UTRGV, Edinburg, TX, 78539, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!