A boson sampler implements a restricted model of quantum computing. It is defined by the ability to sample from the distribution resulting from the interference of identical bosons propagating according to programmable, non-interacting dynamics. An efficient exact classical simulation of boson sampling is not believed to exist, which has motivated ground-breaking boson sampling experiments in photonics with increasingly many photons. However, it is difficult to generate and reliably evolve specific numbers of photons with low loss, and thus probabilistic techniques for postselection or marked changes to standard boson sampling are generally used. Here, we address the above challenges by implementing boson sampling using ultracold atoms in a two-dimensional, tunnel-coupled optical lattice. This demonstration is enabled by a previously unrealized combination of tools involving high-fidelity optical cooling and imaging of atoms in a lattice, as well as programmable control of those atoms using optical tweezers. When extended to interacting systems, our work demonstrates the core abilities required to directly assemble ground and excited states in simulations of various Hubbard models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-024-07304-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!