All-optical subcycle microscopy on atomic length scales.

Nature

Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany.

Published: May 2024

Bringing optical microscopy to the shortest possible length and time scales has been a long-sought goal, connecting nanoscopic elementary dynamics with the macroscopic functionalities of condensed matter. Super-resolution microscopy has circumvented the far-field diffraction limit by harnessing optical nonlinearities. By exploiting linear interaction with tip-confined evanescent light fields, near-field microscopy has reached even higher resolution, prompting a vibrant research field by exploring the nanocosm in motion. Yet the finite radius of the nanometre-sized tip apex has prevented access to atomic resolution. Here we leverage extreme atomic nonlinearities within tip-confined evanescent fields to push all-optical microscopy to picometric spatial and femtosecond temporal resolution. On these scales, we discover an unprecedented and efficient non-classical near-field response, in phase with the vector potential of light and strictly confined to atomic dimensions. This ultrafast signal is characterized by an optical phase delay of approximately π/2 and facilitates direct monitoring of tunnelling dynamics. We showcase the power of our optical concept by imaging nanometre-sized defects hidden to atomic force microscopy and by subcycle sampling of current transients on a semiconducting van der Waals material. Our results facilitate access to quantum light-matter interaction and electronic dynamics at ultimately short spatio-temporal scales in both conductive and insulating quantum materials.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-024-07355-7DOI Listing

Publication Analysis

Top Keywords

tip-confined evanescent
8
microscopy
6
atomic
5
all-optical subcycle
4
subcycle microscopy
4
microscopy atomic
4
atomic length
4
scales
4
length scales
4
scales bringing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!