Hearing preservation (HP) during vestibular schwannomas (VSs) surgery poses a significant challenge. Although brainstem auditory evoked potentials (BAEPs) on the affected side are commonly employed to monitor cochlear nerve function, their low signal-to-noise ratio (SNR) renders them susceptible to interferences, compromising their reliability. We retrospectively analyzed the data of patients who underwent tumor resection, while binaural brainstem auditory evoked potentials (BAEPs) were simultaneously recorded during surgery. To standardize BAEPs on the affected side, we incorporated the synchronous healthy side as a reference (interval between affected and healthy side ≤ 3 min). A total of 127 patients were enrolled. Comparison of the raw BAEPs data pre- and post-tumor resection revealed that neither V-wave amplitude (Am-V) nor latency (La-V) could serve as reliable predictors of HP simultaneously. However, following standardization, V-wave latency (STIAS-La-V) and amplitude (STIAS-Am-V) emerged as stable predictors of HP. Furthermore, the intraoperative difference in V-wave amplitude (D-Am-V) predicted postoperative HP in patients with preoperative HP and remained predictive after standardization. The utilization of intraoperative synchronous healthy side BAEPs as a reference to eliminate interferences proves to be an effective approach in enhancing the reliability of BAEPs for predicting HP in VSs patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079067 | PMC |
http://dx.doi.org/10.1038/s41598-024-58531-8 | DOI Listing |
JMIR Form Res
January 2025
Faculty of Audiology and Speech Language Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
Background: The prevalence of hearing loss in infants in India varies between 4 and 5 per 1000. Objective-based otoacoustic emissions and auditory brainstem response have been used in high-income countries for establishing early hearing screening and intervention programs. Nevertheless, the use of objective screening tests in low- and middle-income countries (LMICs) such as India is not feasible.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Audiology and Otoneurological Explorations, Civil Hospitals of Lyon, 69003 Lyon, France.
: Objective: To discuss therapeutic outcomes in patients with symptomatic near-narrow internal auditory canal (NNIAC). : We retrospectively analyzed the records of 26 symptomatic patients diagnosed with NNIAC, who had been treated with anti-epileptic drugs. In addition to clinical and radiological data, we recorded I-III latencies of auditory brainstem responses prior to and after medical therapy.
View Article and Find Full Text PDFOtol Neurotol
January 2025
Department of Otolaryngology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
Hypothesis: Extracochlear electric-acoustic stimulation (EAS) between the round window membrane and the basal part of the cochlear bone exhibits distinct auditory brainstem response (ABR) characteristics.
Background: The use of EAS in individuals with residual hearing is becoming increasingly common in clinical settings. Ongoing research has explored the characteristics of EAS-induced responses in hearing cochleae.
Medicine (Baltimore)
January 2025
Department of Neurology and Geriatrics, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China.
The aim was to explore the application value of dynamic electroencephalography (EEG) combined with brainstem auditory evoked potential (BAEP) in evaluating the degree of vascular stenosis and prognosis in patients with ischemic stroke (IS). This was a retrospective study using clinical data of patients with IS admitted to the First Affiliated Hospital of Chongqing Medical and Pharmaceutical College from March 2020 to March 2022. The degree of vascular stenosis and prognosis of patients were analyzed.
View Article and Find Full Text PDFThe cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!