Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Genome-wide association studies (GWASs) provide a key foundation for elucidating the genetic underpinnings of common polygenic diseases. However, these studies have limitations in their ability to assign causality to particular genetic variants, especially those residing in the noncoding genome. Over the past decade, technological and methodological advances in both analytical and empirical prioritization of noncoding variants have enabled the identification of causative variants by leveraging orthogonal functional evidence at increasing scale. In this review, we present an overview of these approaches and describe how this workflow provides the groundwork necessary to move beyond associations toward genetically informed studies on the molecular and cellular mechanisms of polygenic disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tcb.2024.03.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!