Introduction: This study aimed to assess the causal relationship between diabetes and frozen shoulder by investigating the target proteins associated with diabetes and frozen shoulder in the human plasma proteome through Mendelian randomization (MR) and to reveal the corresponding pathological mechanisms.
Research Design And Methods: We employed the MR approach for the purposes of establishing: (1) the causal link between diabetes and frozen shoulder; (2) the plasma causal proteins associated with frozen shoulder; (3) the plasma target proteins associated with diabetes; and (4) the causal relationship between diabetes target proteins and frozen shoulder causal proteins. The MR results were validated and consolidated through colocalization analysis and protein-protein interaction network.
Results: Our MR analysis demonstrated a significant causal relationship between diabetes and frozen shoulder. We found that the plasma levels of four proteins were correlated with frozen shoulder at the Bonferroni significance level (p<3.03E-5). According to colocalization analysis, parathyroid hormone-related protein (PTHLH) was moderately correlated with the genetic variance of frozen shoulder (posterior probability=0.68), while secreted frizzled-related protein 4 was highly correlated with the genetic variance of frozen shoulder (posterior probability=0.97). Additionally, nine plasma proteins were activated during diabetes-associated pathologies. Subsequent MR analysis of nine diabetic target proteins with four frozen shoulder causal proteins indicated that insulin receptor subunit alpha, interleukin-6 receptor subunit alpha, interleukin-1 receptor accessory protein, glutathione peroxidase 7, and PTHLH might contribute to the onset and progression of frozen shoulder induced by diabetes.
Conclusions: Our study identified a causal relationship between diabetes and frozen shoulder, highlighting the pathological pathways through which diabetes influences frozen shoulder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085809 | PMC |
http://dx.doi.org/10.1136/bmjdrc-2023-003966 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!