Background: Despite maximal treatment, heart failure (HF) remains a major clinical challenge. Besides neurohormonal overactivation, myocardial energy homoeostasis is also impaired in HF. Trimetazidine has the potential to restore myocardial energy status by inhibiting fatty acid oxidation, concomitantly enhancing glucose oxidation. Trimetazidine is an interesting adjunct treatment, for it is safe, easy to use and comes at a low cost.

Objective: We conducted a systematic review to evaluate all available clinical evidence on trimetazidine in HF. We searched Medline/PubMed, Embase, Cochrane CENTRAL and ClinicalTrials.gov to identify relevant studies.

Methods: Out of 213 records, we included 28 studies in the meta-analysis (containing 2552 unique patients), which almost exclusively randomised patients with HF with reduced ejection fraction (HFrEF). The studies were relatively small (median study size: N=58) and of short duration (mean follow-up: 6 months), with the majority (68%) being open label.

Results: Trimetazidine in HFrEF was found to significantly reduce cardiovascular mortality (OR 0.33, 95% CI 0.21 to 0.53) and HF hospitalisations (OR 0.42, 95% CI 0.29 to 0.60). In addition, trimetazidine improved (New York Heart Association) functional class (mean difference: -0.44 (95% CI -0.49 to -0.39), 6 min walk distance (mean difference: +109 m (95% CI 105 to 114 m) and quality of life (standardised mean difference: +0.52 (95% CI 0.32 to 0.71). A similar pattern of effects was observed for both ischaemic and non-ischaemic cardiomyopathy.

Conclusions: Current evidence supports the potential role of trimetazidine in HFrEF, but this is based on multiple smaller trials of varying quality in study design. We recommend a large pragmatic randomised clinical trial to establish the definitive role of trimetazidine in the management of HFrEF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086535PMC
http://dx.doi.org/10.1136/openhrt-2023-002579DOI Listing

Publication Analysis

Top Keywords

heart failure
8
reduced ejection
8
ejection fraction
8
systematic review
8
myocardial energy
8
trimetazidine hfref
8
role trimetazidine
8
trimetazidine
7
95%
5
effects trimetazidine
4

Similar Publications

Effect of cardiomyocyte-specific lipid phosphate phosphatase 3 overexpression on high-fat diet-induced cardiometabolic dysfunction in mice.

Am J Physiol Heart Circ Physiol

January 2025

Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, 355 Campus Ring Road, Saint John, New Brunswick, E2L 4L5, Canada.

Lipid phosphate phosphatase 3 (LPP3) is a membrane-bound enzyme that hydrolyzes lipid phosphates including the bioactive lipid, lysophosphatidic acid (LPA). Elevated circulating LPA production and cellular LPA signaling are implicated in obesity-induced metabolic and cardiac dysfunction. Deletion of LPP3 in the cardiomyocyte increases circulating LPA levels and causes heart failure and mitochondrial dysfunction in mice.

View Article and Find Full Text PDF

Clarifying the inceptive pathophysiology of hypertensive heart disease helps to impede the disease progression. Through coarctation of the infrarenal abdominal aorta (AA), we induced hypertension in minipigs and evaluated physiological reactions and morpho-functional changes of the heart. Moderate aortic coarctation was achieved with approximately 30 mmHg systolic pressure gradient in minipigs.

View Article and Find Full Text PDF

Introduction: Heart failure (HF) is a chronic condition with an unpredictable trajectory, making effective communication between patients and healthcare providers crucial for optimizing outcomes. This study aims to investigate and compare the communication needs regarding HF trajectory and palliative care between patients and healthcare providers and to identify factors associated with the communication needs of patients with HF.

Methods: A cross-sectional study design was employed, involving 100 patients with HF and 35 healthcare providers.

View Article and Find Full Text PDF

Deubiquitinating enzymes (DUBs) are integral regulators of protein stability. Among these, Ubiquitin-specific protease 18 (USP18) has emerged as a potential therapeutic target for heart failure. However, its precise role in atherosclerosis remains to be comprehensively understood.

View Article and Find Full Text PDF

Importance: Cardiovascular health outcomes associated with noncigarette tobacco products (cigar, pipe, and smokeless tobacco) remain unclear, yet such data are required for evidence-based regulation.

Objective: To investigate the association of noncigarette tobacco products with cardiovascular health outcomes.

Design, Setting, And Participants: This cohort study was conducted within the Cross Cohort Collaboration Tobacco Working Group by harmonizing tobacco-related data and conducting a pooled analysis from 15 US-based prospective cohorts with data on the use of at least 1 noncigarette tobacco product ranging between 1948 and 2015.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!