The study assessed the ecotoxicity and bioavailability of potential metals (PMs) from tannery waste sludge, alongside addressing the environmental concerns of overuse of chemical fertilizers, by comparing the impacts of organic vermicomposted tannery waste, chemical fertilizers, and sole application of tannery waste on soil and rice (Oryza sativa L.) plants. The results revealed that T3, which received high-quality vermicomposted tannery waste as an amendment, exhibited superior enzymatic characteristics compared to tannery sludge amended (TWS) treatments (T8, T9). After harvesting, vermicomposted tannery waste treatment (T3) showed a more significant decrease in PMs bioavailability. Accumulation of PMs in rice was minimal across all treatments except T8 and T9, where toxic tannery waste was present, resulting in a high-risk classification (class 5 < 0.01) according to the SAMOE risk assessment. Results from Fuzzy-TOPSIS, ANN, and Sobol sensitivity analyses (SSA) further indicated that elevated concentrations of PMs (Ni, Pb, Cr, Cu) adversely impacted soil-plant health synergy, with T3 showing a minimal risk in comparison to T8 and T9. According to SSA, microbial biomass carbon and acid phosphatase activity were the most sensitive factors affected by PMs concentrations in TWS. The results from the ANN assay revealed that the primary contributing factor of toxicity on the TWS was the exchangeable fraction of Cr. Correlation statistics underscored the significant detrimental effect of PMs' bioavailability on microbial and enzymatic parameters. Overall, the findings suggest that vermicomposting of tannery sludge waste shows potential as a viable organic amendment option in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142272 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
A sustainable biosorbent, silver nanoparticles-decorated coffee-ground waste (CWAg), was synthesized through a simple in-situ reduction method. CWAg is extensively characterized via SEM-EDX, PZC, FTIR, XRD, HR-TEM, and XPS analyses. The biosorbent was tested to remove chromium (Cr(VI)) and methylene blue (MB) from wastewater, and its antibacterial properties was evaluated.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemical Engineering, Faculty of Engineering, Jazan University, 11451, Jazan, Saudi Arabia.
Sci Total Environ
January 2025
Department of Physical Geography, University of Göttingen, 37077 Göttingen, Germany. Electronic address:
Potentially toxic elements (PTEs) in soils threaten human health through several exposure pathways. However, health risks posed by PTEs in soils in developing countries have not yet been comprehensively investigated. Thus, such countries lack important information that is needed to implement sustainable solutions.
View Article and Find Full Text PDFEnviron Monit Assess
November 2024
Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
Int J Biol Macromol
January 2025
University of Jeddah, Applied College, Biology Department, Jeddah, Saudi Arabia.
Microbial proteases and keratinases find extensive application in both the detergent and leather industries, as well as in poultry waste management. In this study, a multifunctional strain MH1 exhibiting proteolytic and keratinolytic activities was newly isolated and identified as Bacillus zhangzhouensis. To improve its stability, the proteolytic extract was spray-dried and the stability was assessed during two years of storage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!