A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing nitrogen removal through macrophyte harvest and installation of woodchips-based floating beds in surface-flow constructed wetlands. | LitMetric

Enhancing nitrogen removal through macrophyte harvest and installation of woodchips-based floating beds in surface-flow constructed wetlands.

Chemosphere

Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Box 823, 301 18 Halmstad, Sweden. Electronic address:

Published: July 2024

Wetland management maintains nitrogen (N) removal capacity in mature and overgrown constructed wetlands (CWs). We evaluated whether CW management by macrophyte harvesting, and subsequent installation of woodchips-based floating beds (WFBs) planted with Glyceria maxima and Filipendula ulmaria improved N removal. In sixteen heavily overgrown experimental CWs, we applied four treatments: i) only macrophyte harvesting, ii) 5% of the harvested-CW surface covered with WFBs, iii) 20% WFBs cover, and iv) a control treatment (heavily overgrown). N removal was determined in all wetlands at nine occasions. Plant biomass accrual, N assimilation, and denitrification genes nirS, nirK, nosZI and nosZII on plant roots and woodchips from WFBs were estimated. Macrophyte harvesting improved N removal of heavily overgrown CWs, whereas subsequent WFB installation only sometimes improved N removal. Mean N removal efficiencies (± standard deviation) overall were 41 ± 15 %, 45 ± 20 %, 46 ± 16 % and 27 ± 8.3 % for treatments i to iv, respectively. Relative biomass production, root length and root surface area for G.maxima (mean ± standard deviation: 234 ± 114 %, 40 ± 6.5 cm, 6308 ± 1059 cmg, respectively) were higher than those for F. ulmaria (63 ± 86 %, 28 ± 12 cm, 3131 ± 535 cmg, respectively) whereas biomass N assimilation was higher for F. ulmaria (1.8 ± 0.9 gNm of WFB) than for G. maxima (1.3 ± 0.5 gNm of WFB). Denitrification gene abundance was higher on plant roots than on woodchips while G. maxima hosted higher root denitrification gene abundance than F. ulmaria. We conclude that macrophyte harvesting improves N removal in heavily overgrown CWs. WFBs installation has the potential to support plant growth and denitrification in surface-flow constructed wetlands. Further studies need to evaluate the long-term effects of macrophyte harvesting and WFB installation on N removal in CWs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.142284DOI Listing

Publication Analysis

Top Keywords

macrophyte harvesting
20
heavily overgrown
16
constructed wetlands
12
improved removal
12
removal
9
nitrogen removal
8
installation woodchips-based
8
woodchips-based floating
8
floating beds
8
surface-flow constructed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!