Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wetland management maintains nitrogen (N) removal capacity in mature and overgrown constructed wetlands (CWs). We evaluated whether CW management by macrophyte harvesting, and subsequent installation of woodchips-based floating beds (WFBs) planted with Glyceria maxima and Filipendula ulmaria improved N removal. In sixteen heavily overgrown experimental CWs, we applied four treatments: i) only macrophyte harvesting, ii) 5% of the harvested-CW surface covered with WFBs, iii) 20% WFBs cover, and iv) a control treatment (heavily overgrown). N removal was determined in all wetlands at nine occasions. Plant biomass accrual, N assimilation, and denitrification genes nirS, nirK, nosZI and nosZII on plant roots and woodchips from WFBs were estimated. Macrophyte harvesting improved N removal of heavily overgrown CWs, whereas subsequent WFB installation only sometimes improved N removal. Mean N removal efficiencies (± standard deviation) overall were 41 ± 15 %, 45 ± 20 %, 46 ± 16 % and 27 ± 8.3 % for treatments i to iv, respectively. Relative biomass production, root length and root surface area for G.maxima (mean ± standard deviation: 234 ± 114 %, 40 ± 6.5 cm, 6308 ± 1059 cmg, respectively) were higher than those for F. ulmaria (63 ± 86 %, 28 ± 12 cm, 3131 ± 535 cmg, respectively) whereas biomass N assimilation was higher for F. ulmaria (1.8 ± 0.9 gNm of WFB) than for G. maxima (1.3 ± 0.5 gNm of WFB). Denitrification gene abundance was higher on plant roots than on woodchips while G. maxima hosted higher root denitrification gene abundance than F. ulmaria. We conclude that macrophyte harvesting improves N removal in heavily overgrown CWs. WFBs installation has the potential to support plant growth and denitrification in surface-flow constructed wetlands. Further studies need to evaluate the long-term effects of macrophyte harvesting and WFB installation on N removal in CWs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142284 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!