Cryptic diversity poses a great obstacle in our attempts to assess the current biodiversity crisis and may hamper conservation efforts. The gekkonid genus Mediodactylus, a well-known case of hidden species and genetic diversity, has been taxonomically reclassified several times during the last decade. Focusing on the Mediterranean populations, a recent study within the M. kotschyi species complex using classic mtDNA/nuDNA markers suggested the existence of five distinct species, some being endemic and some possibly threatened, yet their relationships have not been fully resolved. Here, we generated genome-wide SNPs (using ddRADseq) and applied molecular species delimitation approaches and population genomic analyses to further disentangle these relationships. Τhe most extensive nuclear dataset, so far, encompassing 2,360 loci and ∼ 699,000 bp from across the genome of Mediodactylus gecko, enabled us to resolve previously obscure phylogenetic relationships among the five, recently elevated, Mediodactylus species and to support the hypothesis that the taxon includes several new, undescribed species. Population genomic analyses within each of the proposed species showed strong genetic structure and high levels of genetic differentiation among populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2024.108091 | DOI Listing |
Pharmacol Res
January 2025
Department of Cardiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China. Electronic address:
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are highly effective targets for therapeutic drugs. GPCRs couple different downstream effectors, including G proteins (such as Gi/o, Gs, G12, and Gq) and β-arrestins (such as β-arrestin 1 and β-arrestin 2) to mediate diverse cellular and physiological responses. Biased signaling allows for the specific activation of certain pathways from the full range of receptors' signaling capabilities.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Cross-feeding involves microbes consuming exudates of other surrounding microbes, mediating elemental cycling. Characterizing the diversity of cross-feeding pathways in ocean microbes illuminates evolutionary forces driving self-organization of ocean ecosystems. Here, we uncover a purine and pyrimidine cross-feeding network in globally abundant groups.
View Article and Find Full Text PDFBackground: Inclusions of TAR DNA binding protein of 43kDa (TDP-43) constitute the main characteristic pathology in the majority (∼97%) of amyotrophic lateral sclerosis (ALS) cases and approximately 50% of patients with frontotemporal lobar degeneration (FTLD). TDP-43 is a nuclear RNA binding protein; however, in disease, it becomes hyperphosphorylated and/or insoluble, hindering its nuclear function in maintaining RNA homeostasis. Importantly, the incidence of TDP-43 proteinopathy extends to aging brains (LATE) and may be concomitant with Alzheimer's disease (AD) neuropathological changes (LATE/AD) in up to 70% of AD patients.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
Background: The "Recruitment and Retention for Alzheimer's Disease Diversity Genetic Cohorts in the ADSP (READD-ADSP)" is developing a resource to expand ancestral diversity in Alzheimer disease (AD) studies to dissect the genetic architecture of AD across different populations. In addition to US sites, READD-ADSP includes four US sites and nine countries in sub-Saharan Africa through the Africa Dementia Consortium (AfDC). The overall goal of READD-ADSP is to identify genetically driven targets in diverse groups including African Americans and Hispanic/Latinos in US, and Africans.
View Article and Find Full Text PDFMol Ecol Resour
December 2024
Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
Relatively little is known of the host associations and compatibility of fungal plant pathogens and endophytes. Publicly available plant genomic DNA can be mined to detect incidental fungal DNA, but taxonomic assignment can be challenging due to short lengths and variable discriminative power among different genomic regions and taxa. Here, we introduce a computationally lightweight and accessible Snakemake pipeline for rapid detection and classification (identification and assignment to taxonomic rank) of pathogenic and endophytic fungi (and other fungi associated with plants) that targets the internal transcribed spacer (ITS) region, a fungal barcode standard.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!